Portable and Non-Invasive System for Gas Exchange Dynamics Estimation and Energy Expenditure as an Indicator of Metabolic State

Autores/as

DOI:

https://doi.org/10.17488/RMIB.46.3.1502

Palabras clave:

dynamic modeling, energy expenditure, gas exchange estimation, non-invasive monitoring, wearable device

Resumen

Accurate estimation of energy expenditure and gas exchange dynamics is essential for health monitoring and performance optimization. This study addresses the limitations of traditional systems by developing a portable, non-invasive, and real-time solution that correlates physiological signals with energy metabolism. The proposed system estimates energy expenditure and metabolic state using oxygen and carbon dioxide flows derived from non-invasive variables such as respiratory ventilation and heart rate. It utilizes Bluetooth Low Energy (BLE) for wireless communication and includes user-friendly interfaces for smartphones and computers to facilitate data visualization and recording. Calibration is performed using a calorimeter, resulting in an average estimation error of 14.83%. The system demonstrates reliable performance under various conditions, providing real-time estimations of energy expenditure and gas exchange. Its portability and ergonomic design improve usability; however, precise calibration remains essential, and broader testing is required to validate robustness. A key advantage of the system is its ability to operate entirely offline, relying solely on BLE for data transmission, making it suitable for real-time monitoring in diverse environments.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

“Energy sources,” Polar Global. Accessed: Jun. 12, 2022. [Online]. Available: https://support.polar.com/en/energy-nutrients.

“Frequently Asked Questions about Body Battery,” Garmin Support Center. Accessed: Jun. 12, 2022. [Online]. Available: https://support.garmin.com/

es-ES/?faq=VOFJAsiXut9K19k1qEn5W5.

“Cardio Pulmonary Exercise Test (CPET), accurate metabolic assessment,” COSMED. Accessed: Dec. 11, 2024. [Online]. Available: https://www.cosmed.

com/en/products/cardio-pulmonary-exercise-test.

G. Nazari, P. Bobos, J. C. MacDermid, K. E. Sinden, J. Richardson, and A. Tang, “Psychometric properties of the Zephyr bioharness device: A systematic

review,” Eur. Rev. Aging Phys. Act., vol. 15, no. 1, Feb. 2018, doi: https://doi.org/10.1186/s13102-018-0094-4.

N. Rosero, J. J. Martinez, and H. Leon, “A bio-energetic model of cyclist for enhancing pedelec systems,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 4418–

, Jul. 2017, doi: https://doi.org/10.1016/j.ifacol.2017.08.918.

N. Rosero, J. J. Martinez, and M. Corno, “Modeling of gas exchange dynamics using cycle-ergometer tests,” IFAC-PapersOnLine, vol. 51, no. 2, pp.

–354, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.03.060.

G. R. Alvarez, J. D. Chiza Ocana, J. M. Ramirez Scarpetta, E. E. Rosero Garcia, and C. A. Lopez Alban, “Instrumentation system for estimating the metabolic

state during the use of the bicycle as a means of transportation,” in Proceedings of the 2021 IEEE 5th Colombian Conference on Automatic

Control, CCAC 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 232–237. doi: https://doi.org/10.1109/CCAC51819.2021.9633326.

C. B. Sanz-Morère et al., “Energy cost of transport in overground walking of a transfemoral amputee following one month of robot-mediated training,”

in Proc. of the Int. Conf. on Robotics and Rehabilitation, 2020, pp. 99–110, doi: https://doi.org/10.1007/978-3-030-69547-7_41.

B. Van Hooren, T. Souren, and B. C. Bongers, “Accuracy of respiratory gas variables, substrate, and energy use from 15 CPET systems during simulated

and human exercise,” Scand J Med Sci Sports, vol. 34, no. 1, Jan. 2024, doi: https://doi.org/10.1111/sms.14490.

A. V Hill, C. N. H. Long, and H. Lupton, “Muscular exercise, lactic acid, and the supply and utilisation of oxygen.—Parts 1-111,” Proceedings of the

Royal Society of London. Series B, Containing Papers of a Biological Character, vol. 96, no. 679, pp. 438–475, Sep. 1924, doi: https://doi.org/10.1098/

rspb.1924.0037.

F. I. Katch and S. Barbara, Essentials of Exercise Physiology, 7th ed., Sound Beach, NY: McArdle, 2011, doi: https://doi.org/10.1002/

bmb.2002.494030060141.

F. Péronnet and B. Aguilaniu, “Lactic acid buffering, nonmetabolic co2 and exercise hyperventilation: a critical reappraisal,” Respir Physiol Neurobiol,

vol. 150, pp. 4–18, 2006, doi: https://doi.org/10.1016/j.resp.2005.04.005.

M. G. Levitzky, Pulmonary Physiology, 10th ed., McGraw Hill, 2022. [Online]. Available: https://accessmedicine.mhmedical.com/content.aspx?book-id=3230&sectionid=268879422. Accessed: Jan. 6, 2025.

C. J. Caspersen, K. E. Powell, and G. M. Christenson, “Physical activity, exercise, and physical fitness: definitions and distinctions for health-related

research,” Public Health Rep., vol. 100, no. 2, pp. 126–131, Mar.–Apr. 1985, PMID: 3920711; PMCID: PMC1424733.

Mayo Clinic, “Electrocardiogram (ECG or EKG),” Accessed: Nov. 23, 2022. [Online]. Available: https://www.mayoclinic.org/es-es/tests-procedures/ekg/

about/pac-20384983.

E. Won and Y.-K. Kim, “Stress, the Autonomic Nervous System, and the Immune-kynurenine Pathway in the Etiology of Depression,” Curr

Neuropharmacol, vol. 14, pp. 665–673, 2016, doi: https://doi.org/10.2174/1570159x14666151208113006.

N. G. Vallejo, D. García López, J. A. De Paz Fernández, D. Nuria, and G. Vallejo, “Diferentes modelos de regresión describen la relación entre el VO2 y la

frecuencia cardiaca (FC), y permiten estimar el VO2 en diferentes intensidades de esfuerzo,” CCD, vol. 1, pp. 131–135, Jul. 2005, doi: https://doi.

org/10.12800/ccd.v1i3.119.

K. Townsend, “Introduction to Bluetooth Low Energy,” Accessed: Apr. 17, 2024. [Online]. Available: https://learn.adafruit.com/introduction-to-bluetooth-

low-energy.

“G367: Tema 3. Ventilación pulmonar,” Accessed: Apr. 17, 2024. [Online]. Available: https://ocw.unican.es/mod/page/view.php?id=522&lang=en.

B. J. Delgado and T. Bajaj, “Physiology, Lung Capacity,” StatPearls, Accessed: Apr. 17, 2024. [Online]. Available: http://www.ncbi.nlm.nih.gov/

pubmed/31082073.

Espressif, “ESP32 Series Datasheet,” Espressif Systems, pp. 1–61, Accessed: Nov. 23, 2022. [Online]. Available: https://www.espressif.com/sites/default/

files/documentation/esp32_datasheet_en.pdf.

“MATLAB App Designer - MATLAB & Simulink,” Accessed: Jun. 03, 2024. [Online]. Available: https://es.mathworks.com/products/matlab/app-designer.

html.

MathWorks Inc, “MATLAB - MathWorks - MATLAB & Simulink,” Accessed: Feb. 22, 2021. [Online]. Available: https://www.mathworks.com/products/matlab.

html.

R. Hernández Sampieri, C. Fernández Collado, D. M. P. Baptista Lucio, S. Méndez Valencia, and C. P. Mendoza Torres, Research Methodology, 6th ed,

, ISBN 978-607-15-1347-9.

“Calibre Biometrics, Wearable Breath Tracking Device, [Online]. Accessed: Oct. 14, 2024. Available: https://calibrebio.com/.

Ministry of Health and Social Protection, Guidelines and Protocols, Viceministry of Public Health and Social Protection, vol. 1, p. 2384, Accessed: Jun.

, 2024 [Online]. Available: https://www.minsalud.gov.co/sites/rid/lists/bibliotecadigital/ride/vs/lineamientos-orientaciones-protocolos-covid19-compressed.

pdf.

L. Roos, W. Taube, N. Beeler, and T. Wyss, "Validity of sports watches when estimating energy expenditure during running," BMC Sports Sci Med

Rehabil, vol. 9, p. 22, Dec. 2017, doi: https://doi.org/10.1186/s13102-017-0089-6.

J. D. Chiza-Ocaña, G. Realpe, C. A. López-Albán, E. Rosero, and J. M. Ramírez-Scarpetta, “Two state quasi-LPV dynamic model for gas exchange

dynamics using the cycle-ergometer test,” Biocybernetics and Biomedical Engineering, vol. 45, no. 1, pp. 105–113, 2025, doi: https://doi.org/10.1016/j.

bbe.2025.01.005.

Descargas

Publicado

2025-12-18

Cómo citar

Realpe Alvarez, G., Jose Miguel, Esteban Emilio, & Carlos Alejandro. (2025). Portable and Non-Invasive System for Gas Exchange Dynamics Estimation and Energy Expenditure as an Indicator of Metabolic State. Revista Mexicana De Ingenieria Biomedica, 46(3), e1502. https://doi.org/10.17488/RMIB.46.3.1502

Número

Sección

Artículos de Investigación

Citas Dimensions