Clasificación de Glaucoma Basada Imágenes de Fondo de Ojo y Aprendizaje Profundo

Autores/as

  • Hiram José Sandoval-Cuellar Universidad Autónoma de Querétaro, México
  • Gendry Alfonso-Francia Universidad Autónoma de Querétaro, México https://orcid.org/0000-0002-0315-1133
  • Miguel Ángel Vázquez-Membrillo Instituto Mexicano de Oftalmología, México
  • Juan Manuel Ramos-Arreguín Instituto Mexicano de Oftalmología, México
  • Saúl Tovar Arriaga Universidad Autónoma de Querétaro, México

DOI:

https://doi.org/10.17488/RMIB.42.3.2

Palabras clave:

Aprendizaje profundo, Diagnóstico del glaucoma, Red neuronal convolucional

Resumen

RESUMEN

El glaucoma es una enfermedad que afecta gradualmente al nervio óptico. La presión intravascular se puede controlar para prevenir la pérdida de visión, por lo que la detección temprana del glaucoma es crucial. El disco óptico ha sido un punto de referencia importante para encontrar anormalidades en la retina. El rápido desarrollo de técnicas de visión por computadora ha hecho posible el analizar las condiciones del ojo ayudando al especialista a realizar un diagnóstico utilizando una técnica no invasiva en su estadio inicial en imágenes de fondo de ojo. En este artículo, se propone una arquitectura para la detección de glaucoma utilizando aprendizaje profundo. Una red neuronal convolucional (RNC) es entrenada para extraer múltiples características, para clasificar imágenes de fondo de ojo. La exactitud, sensibilidad, y el área bajo la curva obtenidos en la base de datos ORIGA son 93.22%, 94.14% y 93.98%. El uso del algoritmo para la detección automática de la región de interés, incrementa considerablemente la exactitud de detección de glaucoma en la base de datos ORIGA.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Raghavendra U, Fujita H, Bhandary SV, Gudigar A, et al. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci [Internet]. 2018;441:41-49. Available from:

https://doi.org/10.1016/j.ins.2018.01.051

Belghith A, Balasubramanian M, Bowd C, Weinreb RN, et al. Glaucoma progression detection using variational expectation maximization algorithm. In: 2013 IEEE 10th International Symposium on Biomedical Imaging [Internet]. San Francisco: IEEE. 2013:876-879. Available from: https://doi.org/10.1109/ISBI.2013.6556615

Yin F, Liu J, Wong DWJ, Tan NM, et al. Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In: 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS). Rome: IEEE. 2012:1-6. Available from: https://doi.org/10.1109/CBMS.2012.6266344

Zilly J, Buhmann JM, Mahapatra D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph [Internet]. 2017;55:28-41. Available from:

https://doi.org/10.1016/j.compmedimag.2016.07.012

Chen X, Xu Y, Kee Wong DWK, Wong TY, et al. Glaucoma detection based on deep convolutional neural network. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) [Internet]. Milan: IEEE. 2015:715-718. Available from:

https://doi.org/10.1109/EMBC.2015.7318462

Acharya UR, Ng EYN, Eugene LW, Noronha KP, et al. Decision support system for the glaucoma using Gabor transformation. Biomed Signal Process Control [Internet]. 2015;15:18-26. Available from:

https://doi.org/10.1016/j.bspc.2014.09.004

Díaz Pinto AY. Machine Learning for Glaucoma Assessment using Fundus Images [Ph.D.'s thesis]. [Valencia]: Universitat Politècnica de València, 2019. 117P.

Gour N, Khanna P. Automated glaucoma detection using GIST and pyramid histogram of oriented gradients (PHOG) descriptors. Pattern Recognit Lett [Internet]. 2020;137:3-11. Available from:

https://doi.org/10.1016/j.patrec.2019.04.004

Nawaldgi S. Review of automated glaucoma detection techniques. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) [Internet]. Chennai: IEEE. 2016:1435-1438. Available from:

https://doi.org/10.1109/WiSPNET.2016.7566373

Septiarini A, Harjoko A, Pulungan R, Ekantini R. Automated Detection of Retinal Nerve Fiber Layer by Texture-Based Analysis for Glaucoma Evaluation. Healthc Inform Res [Internet]. 2018;24(4):335. Available from:

https://doi.org/10.4258/hir.2018.24.4.335

Del Portillo C. Cómo Entender y Vivir Con Glaucoma. Glaucoma Research Foundation. [Internet]. 2013; Available from:

https://www.glaucoma.org/GRF_Understanding_Glaucoma_ES

Li A, Wang Y, Cheng J, Liu J. Combining Multiple Deep Features for Glaucoma Classification. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) [Internet]. Calgary: IEEE. 2018:985-989. Available from:

https://doi.org/10.1109/ICASSP.2018.8462089

Carrillo J, Bautista L, Villamizar J, Rueda J, et al. Glaucoma Detection Using Fundus Images of the Eye. In: 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) [Internet]. Bucaramanga: IEEE. 2019:1-4. Available from: https://doi.org/10.1109/STSIVA.2019.8730250

Sarhan A, Rokne J, Alhajj R. Glaucoma detection using image processing techniques: A literature review. Comput Med Imaging Graph [Internet]. 2019;78:101657. Available from:

https://doi.org/10.1016/j.compmedimag.2019.101657

Li L, Xu M, Liu H, Li Y, et al. A Large-Scale Database and a CNN Model for Attention-Based Glaucoma Detection. IEEE Trans Med Imaging [Internet]. 2020;39(2):413-424. Available from: https://doi.org/10.1109/TMI.2019.2927226

Zhang Z, Lee BH, Liu J, Wong DWK, et al. Optic disc region of interest localization in fundus image for Glaucoma detection in ARGALI. In: 2010 5th IEEE Conference on Industrial Electronics and Applications [Internet]. Taichung: IEEE. 2010:1686-1689. Available from: https://doi.org/10.1109/ICIEA.2010.5515221

Rani A, Mittal D. Measurement of Arterio-Venous Ratio for Detection of Hypertensive Retinopathy through Digital Color Fundus Images. J Biomed Eng Med Imaging [Internet]. 2015;2(5):35. Available from: https://doi.org/10.14738/jbemi.25.1577

Zhang Z, Yin FS, Liu J, Wong WK, et al. ORIGA-light: An online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology [Internet]. Buenos Aires: IEEE. 2010:3065-3068. Available from: https://doi.org/10.1109/IEMBS.2010.5626137

Sng CC, Foo L-L, Cheng C-Y, Allen JC, et al. Determinants of Anterior Chamber Depth: The Singapore Chinese Eye Study. Ophthalmology [Internet]. 2012;119(6):1143-1150. Available from: https://doi.org/10.1016/j.ophtha.2012.01.011

Decencière E, Zhang X, Cazuguel G, Lay B, et al. Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereol [Internet]. 2014;33:231-234. Available from: https://doi.org/10.5566/ias.1155

Brandon L, Hoover A. Drusen Detection in a Retinal Image Using Multi-level Analysis. In: Ellis R.E., Peters T.M. (eds). Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003 [Internet]. Springer, Berlin, Heidelberg: Lecture Notes in Computer Science. 2003:618-625p. Available from:

https://doi.org/10.1007/978-3-540-39899-8_76

Sivaswamy J, Krishnadas SR, Joshi GD, Jain M, et al. Drishti-GS: Retinal image dataset for optic nerve head segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) [Internet]. Beijing: IEEE. 2014:53-56. Available from: https://doi.org/10.1109/ISBI.2014.6867807

Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques [Internet]. Waltham: Elsevier. 2011:113-114p. Available from: https://doi.org/10.1016/B978-0-12-381479-1.00016-2

Bhatkalkar BJ, Reddy DR, Prabhu S, Bhandary S. Improving the Performance of Convolutional Neural Network for the Segmentation of Optic Disc in Fundus Images Using Attention Gates and Conditional Random Fields. IEEE Access [Internet]. 2020;8:29299-29310. Available from: https://doi.org/10.1109/ACCESS.2020.2972318

Gheisari S, Shariflou S, Phu J, Kennedy PJ, et al. A combined convolutional and recurrent neural network for enhanced glaucoma detection. Sci Rep [Internet]. 2021;11(1):1995. Available from: https://doi.org/10.1038/s41598-021-81554-4

Gómez-Valverde J, Antón A, Fatti G, Liefers B, et al. Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed Opt Express [Internet]. 2019;10(2):892-913. Available from: https://doi.org/10.1364/BOE.10.000892

Diaz-Pinto A, Morales S, Naranjo V, Köhler T, et al. CNNs for automatic glaucoma assessment using fundus images: an extensive validation. BioMed Eng Online [Internet]. 2019;18(1):1-19. Available from: https://doi.org/10.1186/s12938-019-0649-y

Unión Internacional de Telecomunicaciones. Parámetros de codificación de televisión digital para estudios con formatos de imagen normal 4:3 y de pantalla ancha 16:9. ITU [Internet]. 2011; Available from: RECOMENDACIÓN UIT-R BT.601-7 - Parámetros de codificación de televisión digital para estudios con formatos de imagen normal 4:3 y de pantalla ancha 16:9 (itu.int)

Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv [Internet]. 2014; Available from:

https://arxiv.org/abs/1409.1556

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun [Internet]. 2017; 60(6):84-90. Available from: https://doi.org/10.1145/3065386

Erhan D, Bengio Y, Courville AC, Vincent P. Visualizing Higher-Layer Features of a Deep Network [Internet]; 2009. Report 1341. Available from: (PDF) Visualizing Higher-Layer Features of a Deep Network (researchgate.net)

Zeiler MD, Taylor GW, Fergus R. Adaptive deconvolutional networks for mid and high level feature learning. In: 2011 International Conference on Computer Vision [Internet]. Barcelona: IEEE. 2011:2018-2025. Available from: https://doi.org/10.1109/ICCV.2011.6126474

Dosovitskiy A, Brox T. Inverting Visual Representations with Convolutional Networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Internet]. Las Vegas: IEEE. 2016:4829-4837. Available from: https://doi.org/10.1109/CVPR.2016.522

Selvaraju RR, Cogswell M, Das A, Vedantam R, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: 2017 IEEE International Conference on Computer Vision (ICCV) [Internet]. Venice: IEEE. 2017:618-626. Available from: https://doi.org/10.1109/ICCV.2017.74

Descargas

Publicado

2021-11-21

Cómo citar

Sandoval-Cuellar, H. J. ., Alfonso-Francia, G., Vázquez-Membrillo, M. Ángel, Ramos-Arreguín, J. M., & Tovar Arriaga, S. (2021). Clasificación de Glaucoma Basada Imágenes de Fondo de Ojo y Aprendizaje Profundo. Revista Mexicana De Ingenieria Biomedica, 42(3), 28–41. https://doi.org/10.17488/RMIB.42.3.2

Número

Sección

Artículos de Investigación

Citas Dimensions