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ABSTRACT
In this paper a 3D morphological composition of transformations
for brain extraction on brain Magnetic Resonance Images T1 (MRI
T1) is presented. The proposal makes use of two morphological
connected transformations, the lower leveling and a family of the
viscous alternating sequential filters (VASFs). The properties of these
operators -which consist in the control of the reconstruction process
of a marker into the original image-, are exploited to segment the
brain in 20 volumes of MRI T1. The segmented brains are compared
with respect to: i) the segmentations obtained from BET which is
popular among the scientific community for segmenting the brain; and
ii) manual segmentations. The computed indices indicate that the
proposed transformation produces good results during its performance.
The consumed time for the algorithm during the execution is acceptable
and it can be implemented in Matlab.

Keywords: brain segmentation, connected transformations,
filtering, viscous transformations.
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RESUMEN
En este artículo se presenta una composición de transformaciones
morfológicas para la extracción del cerebro en imágenes de resonancia
magnética T1 (MRI T1) en 3D. La propuesta hace uso de dos
transformaciones morfológicas conexas, la nivelación inferior y una
familia de filtros viscosos alternados secuenciales (VASFs). Las
propiedades de estos operadores- las cuales consisten en el control
del proceso de reconstrucción de un marcador dentro de la imagen
original-, se explotan para segmentar el cerebro de 20 volúmenes
de MRI T1. Los cerebros segmentados se comparan respecto a:
i) segmentaciones obtenidas a partir del algoritmo BET, el cual es
popular en la comunidad científica para la segmentación del cerebro;
y ii) segmentaciones manuales. Los índices calculados indican que la
transformación propuesta produce buenos resultados en su desempeño.
El tiempo empleado por el operador durante su ejecución es aceptable
además de que la propuesta puede ser implementada en Matlab.

Palabras clave: segmentación del cerebro, transformaciones conexas,
filtrado, transformaciones viscosas.

INTRODUCTION

Mathematical Morphology (MM) is a technique
where the images can be analyzed from a
structural point of view. A special field of
application of the MM is the segmentation
of medical imaging. In particular, in this
paper a composition of two morphological
transformations defined for the 3D case and
capable of separating brain tissue from skull
is presented as proposal. The composed
transformation takes into consideration the lower
leveling[1] and the viscous alternated sequential
filters[2]. The lower leveling propagates a
marker (the marker is a part of the original
image obtained from an operator) at the
interior of the original volume in a controlled
manner. Hence, the output image is contained
into the original one. While the viscous
alternated sequential filter allows disconnecting
and smoothing chained components[2]. The
viscous name appears because when chained
components are separated, the output image
visually resembles with a viscous effect.

The proposal is tested on 20 volumes of MRI
T1 taken from the IBSR database[3] to separate
brain. In order to compare our results, the Brain
Extraction Tool (BET) -which is a popular skull-
stripping algorithm- will be used. An important
characteristic of BET is its quickness to separate
the skull from MRI volumes of the brain. Other
algorithms reported in the current literature used
to carry out the same task can be found in
references [4,5,6,7,8,9,10,11,12]. The composed
operator provided in this paper is similar to
that presented in [12]. However, there are two
significant differences, i) here, the composition
is obtained from the application of the lower
leveling and the alternated sequential filters;
while in [12], the lower leveling and the viscous
opening are utilized; and ii) the execution time
to segment the brain is improved in this paper.

The computed segmentations will be
compared using the Jaccard[13] and Dice[14]
indices. It is noteworthy to mention that, in the
literature, two problems are associated during
the deskulling process, 1) time used to separate
brain, and 2) the quality of the segmentation.
For example, in [12], the Jaccard and Dice indices
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have values around 0.93 and the proposal given
to separate brain consumes around 15 minutes.
In this paper it is introduced a morphological
transformation capable of processing a MRI T1
in 3D with 60 slices in 83 seconds with Jaccard
indices around 0.93.

This paper is organized as follows, in
section Methodology some basic morphological
transformations are defined which will be useful
to introduce our proposal. In section Results
and Discussion, a comparison is made between
the segmented brains using our proposal and
those obtained from: i) manual segmentations
provided by the IBSR database[3]; and ii)
BET algorithm implemented in the MRicro
software[15]. In Discussion section, the
advantages and disadvantages of our proposal
are presented. The conclusions correspond to the
last section.

METHODOLOGY

Opening by reconstruction

In MM, the basic transformations are the
erosion εµB(f) and dilation δµB(f) [16], where
B represents the 3D structuring element which
contains its origin in the center. Figure 1
illustrates the shape of the structuring element
used in this paper. B̆ denotes the transposed set
of B respect its origin, B̆ = {−x : x ∈ B}, µ is a
size parameter, f is the input image defined on
Z3, Z represents the integer set and x is a point
on the definition domain.

The morphological erosion and dilation are
expressed as follows:

εµB(f)(x) = ∧{f(y) : y ∈ µB̆x}

δµB(f)(x) = ∨{f(y) : y ∈ µB̆x}

where ∧ and ∨ are the inf and sup operators.
The morphological erosion and dilation permit
to build other type of transformations; these
include the morphological opening γµB(f) and
closing ϕµB(f):

γµB(f)(x) = δµB̆(εµB(f))(x)

ϕµB(f)(x) = εµB̆(δµB(f))(x)

Figure 1: Shape of the 3D structuring element.

In order to reduce the notation, consider
that µB = µ. The transformations having the
characteristics of modifying the regional maxima
or minima, without considerably affecting the
remaining components, are the opening and
closing by reconstruction. These operators use
the geodesic transformations[17]. The geodesic
dilation δ1

f (g) and erosion ε1
f (g) are expressed as

δ1
f (g) = f ∧ δB(g) with g ≤ f , and ε1

f (g) =
f ∨ εB(g) considering g ≥ f , respectively.
When function g is equal to the morphological
erosion or dilation, and the basic geodesic
transformations are iterated until stability, the
opening γ̃µ(f) or closing ϕ̃µ(f) by reconstruction
are obtained,

γ̃µ(f)(x) = δ1
fδ

1
f · · · δ1

f (εµ(f))(x)︸ ︷︷ ︸
until stability

ϕ̃µ(f)(x) = ε1
fε

1
f · · · ε1

f (δµ(f))(x)︸ ︷︷ ︸
until stability

Viscous opening and closing

These transformations allow dealing with
overlapped or chained components and provide
a solution to disconnect them, formally[2]:

γ̃(λ, µ)(f) = δλγ̃µ−λελ(f) with λ ≤ µ (1)
ϕ̃(λ, µ)(f) = ελϕ̃µ−λδλ(f) with λ ≤ µ (2)
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(a)                                        (b) 

                                                     (c)                                         (d) 

Figure 2: Viscous opening illustration. (a)
Original image; (b) erosion size λ = 5; (c)
opening by reconstruction µ−λ = 3 of the image
in Fig. 2(b); (d) dilated size λ = 5 of the image
in Fig. 2(c).

Viscous opening and closing utilize the
parameters λ and µ. The ελ(f) and δλ(f) are
used to detect those components that can be
separated. To illustrate this situation consider
the image in Fig. 2. Original image is presented
in Fig. 2(a). In Fig. 2(b), the erosion size λ =
5 disconnects chained components; posteriorly
in Fig. 2(c) the opening by reconstruction
eliminates the components of size minor than
µ − λ = 3 while the remaining components
are maintained unchanged. Finally, in Fig.
2(d) the dilated image with λ = 5 recover
the size of the original components but now
they are disconnected. The components that
do not support the erosion and the opening by
reconstruction are merged with the background.

Viscous Alternating Sequential Filters
(VASFs)

Serra[18] defined and characterized four
operators where the size of the structuring
element µ is indexed over a size distribution
with 1 ≤ µ ≤ k.

    (a)                                                     (b) 

              (c) 

Figure 3: Viscous Alternating Sequentail Filters
illustration. (a) Original volume; (b) VASFs with
λ1 = 1, λ2 = 2 and µ = 5; the filter applied is
Nλ2,µ = nλ2,µnλ1,µ; (c) a threshold between 90-
255 sections is computed for the image in Fig.
3(b) and lately those pixels different of 0 are
recovered from the original volume.

Let us take one of these operators defined as
follows in terms of connected viscous openings
and closings[2]:

nλ,µ(f) = ϕ̃λ,µγ̃λ,µ(f)

For fixed parameters λ1, λ2, with λ1 ≤ λ2 ≤ µ,

nλ1,µnλ2,µ(f) ≤ nλ2,µ(f) ≤ nλ2,µnλ1, u(f)

From last equation and for a family {λi}, with
λj ≤ λk if j < k, the following VASF is
defined[2]:

Nλn,µ(f) = nλn,µ · · ·nλ2,µnλ1,µ(f) (3)

with the condition λn ≤ µ.
The VASFs will be used to segment some

regions of interest. The segmentation process
consist in flat the maxima and minima iteratively
through the viscous opening and closing. At the
end with a threshold is posible to recover the
flatened zones under study. Fig. 3 illustrates the
performance of Nλn,µ. Notice that, the brain has
been completely separated.
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                                                            (a)                                                        (b) 

                                                            (c)                                                        (d) 

Figure 4: Lower leveling illustration. (a)
Original image; (b) marker by gradient, i.e.,
gradiµ(f) = f − εµ(f); (c) lower leveling with
α = 3; (d) arithmetic difference between images
in Figs. 4(a) and 4(c).

Nevertheless, the problem of Eq. 3 is that
not always produces the same result and parts
of the skull can be obtained in the final
segmentation. Due to this situation, the VASFs
will be used with the lower leveling1 to improve
the final result. Lower leveling transformation is
presented below.

Lower Leveling

The extended lower leveling is expressed as
follows[1]:

ψ1
µ,α(f, g) = f ∧ [g ∨ (δµ(g)− α)] (4)

where f is the reference image, g is a marker,
α ∈ [0, 255] is a positive scalar called slope, and
µ is the size of the structuring element. The
marker g used in this paper corresponds to,

g = γµ(f) (5)

The Eq. 5 is iterated until stability with the
purpose of reconstructing the marker g at the

interior of the original mask f , i.e.:

Ψn
µ,α(f, g) = lim

n→∞
ψnµ,α(f, g)

= ψ1
µ,α · · ·ψ1

µ,α(ψ1
µ,α)(g)︸ ︷︷ ︸

until stability

(6)

The image in Fig. 4, ilustrates the performance
of Eq. 6. In Fig. 4(b) a marker obtained from
the internal gradient is shown. The internal
gradient is defined as the arithmetic difference
between the original image and the eroded one,
i.e., gradiµ(f) = f−εµ(f). The internal gradient
uniquely detects regions on the skull. The idea
of applying Eq. 6 using as marker the internal
gradient is to reconstruct precisely the skull. The
output image after applying Eq. 6 with α = 3 is
displayed in Fig. 4(c). In this image the skull
has been separated and reconstructed. Hence
the arithmetic difference f−Ψn

µ,α(f, g), allows us
to recover the remaining components, i.e., brain,
dura matter, among others, as is illustrated in
Fig. 4(d). The problem of separating brain
in this way is that the intensity levels of the
white matter are similar to the skull bringing as
consequence that the marker cannot be obtained
uniquely on the bone.

On the other hand, the appropriated size
of the structuring element to detect the
marker utilized in this paper is found through
a granulometric study. The granulometry
definition is introduced below.

Granulometry

Granulometry is the distribution by sizes of
particles that constitute an aggregate; it is
employed in diverse areas to describe the
qualities of size and shape of individual grains
within a product. The concept of granulometry
was introduced by G. Matheron at the end of the
sixties and is presented as follows[19].

Definition (Granulometry). Let (ψλ≥0)λ∈Z+

be a family of transformations depending on
an unique positive parameter λ. This family
constitutes a granulometry if and only if the next
three properties are verified: (i)∀ positive λ, ψλ is
increasing; (ii) ∀ positive λ, ψλ is antiextensive,
and (iii) ∀ positive λ and µ, ψµ = ψµψλ =
ψmax(λ,µ).
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Figure 5: Granulometry. The Eq. 7 is computed
on a volume of MRI T1 segmented in this paper
to detect the size µ corresponding to discover the
brain.

The family of morphological openings and
closings for the numerical case {γµ}, {ϕµ} with
µ = {1, . . . , n} fulfills this last definition. The
volume distribution χ is computed with Eq. 7:

χ =
vol(γ(µ)(f))− vol(γµ−1(f))

vol(f) (7)

where vol represents the volume of f, i.e.,
the sum of all intensity levels into the image.
Figure 5 presents a granulometric study applied
on a volume of MRI T1 segmented in this
paper. Notice in this figure that, for sizes of
µ between 1-5 the openings detect a component
corresponding to the skull while openings
between sizes µ in the interval 5-21 detect an
important presence of the brain. From this
analysis, appropiated sizes of µ to detect the
marker of the brain using the morphological
opening are within the interval µ ∈ [6, 22].

The operators presented so far will be used
to introduce a methodology to separate brain in
volumes of MRI T1 for the 3D case.

Methodology to segment brain

The idea to separate brain and skull consists in
combining Eq. 3 and Eq. 6 using as marker
the Eq. 5. The separation of the brain consists
in: i) to compute a marker of the brain using
the morphological opening; ii) posteriorly, the
lower leveling will reconstruct the portion of the
brain into the head. However, the slope α will
avoid the complete reconstruction of the marker

at the interior of the volume; and iii) to clean
those regions adhered to the reconstructed brain,
Eq. 3 will be applied together with a threshold
operation.

Formally, next filter expresses the
aforementioned in steps i, ii and iii,

ξλn,µz ,µx,α,µy (f)(x) = Nλn,µz [Ψn
µx,α(f, γµy (f))](x)

(8)

where γµy (f) indicates that a portion of the
brain will be reconstruted into the head f
through the transformation Ψn

µx,α(f, γµy (f)),
and lately all regions adhered to the brain
are smoothed by applying the VASFs, i.e.,
Nλn,µz [Ψn

µx,α(f, γµy (f))].
Equation 8 is in term of the parameters λn,

µz, µx, α and µy. Now, an explanation of
how selecting the values for these parameters is
provided.

µy : This parameter represents the size of the
structuring element of the morphological
opening γµy (f) used to obtain an initial
marker of the volume f . According to the
granulometric study presented in Fig. 5
(see section Granulometry), adequate sizes
for µy are contained in the interval µy ∈
[6, 22]. In particular, in this paper, µy = 12
is utilized.

µx : In this paper, µx takes the value of 1 to
reconstruct the marker γµy (f) as close to
the original volume f .

α : This parameter is used in Eq. 6 and its
purpose is to control the propagation of
the marker at the interior of the original
volume f . When α increases, less volume
is reconstructed. In Fig. 6 this effect
is illustrated. Adequated values for α
according to the image in Fig 6 are in the
interval 6 to 12. With α in this interval,
the skull component is almost eliminated.
In our case α = 10 is considered.

λn, µz : These parameters correspond to the
VASFs. The task of the VASFs is
smoothing the remaining components of
the skull after the application of the lower
leveling.
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Figure 6: Parameter α determination. The input volume f is processed for the 3D case; however to
visualize the effect of α parameter, slices in 2D are displayed. (a) Slice taken from volume f; (b) Marker
g = γµ (f) considering a structuring element size 12; (c) Eq. 6 with µ = 1 and α = 1; (d) Eq. 6 with
µ = 1 and α = 1; (e) Eq. 6 with µ = 1 and α = 4; (f) Eq. 6 with µ = 1 and α = 6; (g) Eq. 6 with
µ = 1 and α = 9; (h) Eq. 6 with µ = 1 and α = 12.

An example of this situation can be seen
in Fig. 6(g) where the lower leveling
is applied considering α = 9. This
example is important because it illustrates
the approximate size of the remaining
components of the skull that should be
eliminated. As described before when the
VASFs were introduced, once has been
considered the dimension of the bone to be
removed, the complete skull is supressed
by applying the VASFs with λn = 2 and
µz = 5 (see Fig. 3). However, due
to the volumes processed with the VASFs
will contain less information after applying
the lower leveling, then the µz parameter
can be reduced to 3 instead of 5 with the
purpose of reducing the execution time. If
λn = 2, the minimum value taken by µz is
3 because of next relation must be fulfilled,
λ1 ≤ λ2 ≤ µz, see section of Viscous
Alternating Sequential Filters.

RESULTS AND DISCUSSION

In this paper, 20 MRIs T1 (denoted
as IBSR) of the head taken from the
Centre for Morphometric Analysis (CMA)
at the Massachusetts General Hospital
(http://www.nitrc.org)[3] are processed with
Eq. 8. The parameters utilized to separate
the brain are shown in Table 1. From Table 1
next comments are presented:

i. The parameters λn, µz, µx, α, µy associated to
Eq. 8 are similar for all segmented brains.

ii. The parameter Th1 represents a threshold
used to eliminate cerebrospinal fluid
with the purpose of disconnecting several
regions between the brain and skull.
According to the results presented in 20,
the cerebrospinal fluid is eliminated with
threshold values among 20-255 sections.
Fig. 7 illustrates this situation. Original
image is located in Fig. 7(a), whilst
the threshold among 20-255 sections is
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presented in Fig. 7(b). Notice that, several
components among the brain and the skull
have been merged with the background,
while the remaining regions are maintained
unchanged. In Fig. 7(c) it is presented a
mask between the original image (7(a)) and
the image in Fig. 7(b). The image in Fig.
7(c) is convenient during the processing
because when the leveling transformation
reaches the regions where cerebrospinal
fluid was located (dark regions); the
propagation of the marker will be slower,
obtaining in this way almost the separated
brain with the leveling transformation.

iii. The selected size of the opening to obtain a
marker is µy = 12. This value belongs to
the interval 6 to 22 according to the graph
in Fig. 5.

iv. The parameter λn = 2 indicates that the
following filter will be applied:

Nλn,µ(f) = N2,µ(f) = n2,µn1,µ(f)

with µ fixed to 3.

v. The parameter Th2 allows recovering the
brain region. The threshold value is
according to the information provided in
[20], to eliminate dark regions.

The algorithm utilized to separate the brain
is given as follows. The notation .* , * and
> are similar that in Matlab. .* represents
the arithmetic multiply of the elements of the
matrices in the same positions, * the arithmetic
multiply, while > produces a logical image,
true(1) for all values fulfilling the condition, and
false(0) in other case.
Algorithm:

a. Load the 3D image and assign to f

b. threshold1 =1*( f >Th1)

c. h = f .* threshold11

d. µy = 12; α = 10, λn = 2; µz = 3

e. Compute the marker g = γµy (h)

f. Iterate Eq. 6 using g = γµy (h), the result
is kept in J that represents Ψn

µx,α

g. Apply the filter Nλn,µ to the image J
and the resultant image is kept in R that
represents ξλn,µz ,µx,α,µy .

h. threshold2 =1*(R >Th2)

i. brain=h.* threshold 2

                          (a)                                        (b) 

                                                  (c) 

Figure 7: Threshold parameter. (a) Original
image; (b) threshold application among 20-255
sections to separate cerebrospinal fluid; (c) Mask
between images in Figs. 7(a) and 7(b).
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Figure 8: Illustration of the algorithm to segment brain. (a) Original volume f; (b) Mask between the
original volume and the thresholded image computed from Fig. 7(a) considering sections 80-255; (c)
Morphological opening size 12, γµ(y=12) (f); (d) Lower leveling considering µ = 1 and α = 8 using as
marker the morphological opening, i.e., Ψn

µx=1,α=8 (f , γµy=12 (f)); (e) The Nλn=2,µz=3 filter is applied
on the output image obtained in (d); (f) The segmented brain is obtained from a mask between the
original volume and the thresholded image computed from Fig. 7(e) considering sections 90-255.
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Figure 9: Brain segmentation of the volume IBSR_7. (a) Original images; (b) Manual segmentations
obtained from the Centre for Morphometric Analysis (CMA) at the Massachusetts General Hospital
(http://www.nitrc.org); (c) segmented brain obtained by applying the proposed algorithm; (d)
segmentations obtained from BET algorithm.
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Table 1: Parameters used in Eq. 8 to separate
the brain

Volume Th1 µy α µx λn µz Th2

IBSR_001 50 12 10 1 2 3 90
IBSR_002 50 12 10 1 2 3 90
IBSR_004 50 12 10 1 2 3 90
IBSR_005 40 12 10 1 2 5 100
IBSR_006 50 12 10 1 2 3 90
IBSR_007 50 12 10 1 2 3 90
IBSR_008 50 12 10 1 2 3 90
IBSR_011 70 12 10 1 2 3 100
IBSR_012 70 12 10 1 2 3 100
IBSR_013 70 12 10 1 2 3 100
IBSR_015 40 12 10 1 2 3 80
IBSR_016 50 12 10 1 2 3 90
IBSR_017 50 12 10 1 2 3 90
IBSR_100 50 12 10 1 2 3 90
IBSR_110 70 12 10 1 2 3 100
IBSR_111 70 12 10 1 2 3 100
IBSR_112 50 12 10 1 2 3 90
IBSR_191 50 12 10 1 2 3 90
IBSR_202 50 12 10 1 2 3 90
IBSR_205 50 12 10 1 2 3 90

In Fig. 8 several of the steps previously
mentioned are illustrated. For implementing the
step f of the algorithm, the condition used as stop
criterion is the volume, i.e., when the volume of
the processed image does not change then the
idempotence or stability has been reached.

In Fig. 9 some output images belonging
to the volume IBSR_7 (see Fig. 9(a)) and
processed with the algorithm aforementioned are
exhibited, see Fig. 9(c). In order to compare
our results, the Jaccard and Dice indices are
computed on: i) manual segmentations obtained
from the IBSR volumes, and ii) segmentations
obtained from the BET algorithm implemented
in the MRicro software with default parameters.

Some slices of the manual segmentation
corresponding to the volume IBSR_7 are
presented in Fig. 9(b), while a set of slices
belonging to the volume segmented with the
MRicro software are displayed in Fig. 9(d).
The Jaccard and Dice indices associated to the
aforementioned segmentations are presented in
Table 2.

Table 2: Jaccard and Dice indices computed on
the segmented volumes

IBSR1 Eq. 8 BET
Volume Jaccard Dice Jaccard Dice

IBSR1_001 0.9373 0.9676 0.7949 0.8857
IBSR1_002 0.9431 0.9707 0.9091 0.9524
IBSR1_004 0.9220 0.9594 0.8539 0.9212
IBSR1_005 0.8415 0.9140 0.4721 0.6414
IBSR1_006 0.9117 0.9538 0.5335 0.6958
IBSR1_007 0.9544 0.9767 0.8790 0.9356
IBSR1_008 0.9475 0.9731 0.7587 0.8628
IBSR1_011 0.9222 0.9595 0.8444 0.9157
IBSR1_012 0.9038 0.9495 0.8130 0.8968
IBSR1_013 0.9012 0.9480 0.8873 0.9403
IBSR1_015 0.8947 0.9444 0.3976 0.5690
IBSR1_016 0.9318 0.9647 0.6575 0.7933
IBSR1_017 0.9376 0.9678 0.6730 0.8045
IBSR1_100 0.9445 0.9714 0.9085 0.9520
IBSR1_110 0.9162 0.9562 0.9085 0.9520
IBSR1_111 0.9240 0.9605 0.8233 0.9031
IBSR1_112 0.9282 0.9628 0.8347 0.9099
IBSR1_191 0.9484 0.9735 0.9243 0.9607
IBSR1_202 0.9441 0.9712 0.9082 0.9519
IBSR1_205 0.9451 0.9718 0.9085 0.9520

According to the computed indices, the Eq. 8
outperforms the BET algorithm. However there
are some points to mention:

1. BET algorithm is faster and only requires
2 seconds to segment the volume.
Nevertheless, during the segmentation of
the brain, this is cropped like a circle, due
to this, the Jaccard and Dice indices have
minor values than those computed with
Eq. 8.

2. The proposed algorithm utilizes 83 seconds
to segment a brain with 60 slices, and
although the time is superior to the BET
algorithm, the segmentations are better.
In 12, the maximum time reported for
other methodologies to separate brain is
35 minutes. Also in [12], two expressions
to segment brain are proposed, the Eq. 9
and Eq. 12. The results obtained in this
paper outperform those obtained with Eq.
12 and the reduction of the execution time
is considerable. Our algorithm utilizes 83
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seconds while Eq. 9 and Eq. 12 employ
174 and 354 seconds to process a volume
of 60 slices respectively.

CONCLUSIONS

In this paper a morphological transformation is
presented to segment brain from MRI T1 of the
head. The Jaccard and Dice indices indicate that
our proposal provides better segmentations than
those obtained from the BET algorithm which
is very popular software among the scientific
community. The time used to separate the
brain with our proposal is adequate (83 seconds
for a volume of 60 slices), in addition the
algorithm can be implemented with Matlab
because several of the required transformations
are already implemented in such software.
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