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Cervical cancer is the fourth most commonly diagnosed cancer among women worldwide and it is a leading cause of death 

in women. Diagnosis is typically performed manually by analyzing squamous cells in Pap smear tests, a process that is 

time-consuming and prone to a high rate of errors. The adoption of automated analysis methods has significantly reduced 

both diagnostic time and human errors. A key step in this automated pipeline is the detection of squamous cell nuclei. In 

this study, we propose a Multilayer Perceptron (MLP) artificial neural network model that includes local image features 

to automatically locate squamous cell nuclei. The proposed workflow is intended to detect the presence or absence of 

nuclei, which aligns with its use in cytology screening. For training we utilized two publicly available datasets: CRIC and 

SIPaKMeD. Unlike many state-of-the-art approaches, our method learns directly from entire images rather than relying 

on pre-segmented regions. It achieves accuracies of 0.9526 and 0.9397 on the CRIC and SIPaKMeD datasets, respectively. 

Our approach offers a simple yet effective solution, delivering performance on par with more complex models reported in 

the literature. 
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El cáncer de cuello uterino es el cuarto cáncer más comúnmente diagnosticado entre las mujeres en todo el mundo y sigue 

siendo una de las principales causas de muerte en las mujeres. El diagnóstico generalmente se realiza manualmente 

mediante el análisis de células escamosas en pruebas de Papanicolaou, un proceso que requiere mucho tiempo y es 

propenso a una alta tasa de errores. La adopción de métodos de análisis automatizados ha reducido significativamente 

tanto el tiempo de diagnóstico como los errores humanos. Un paso clave en este proceso automatizado es la detección de 

núcleos de células escamosas. En este estudio, se propone un modelo de red neuronal artificial tipo Perceptrón Multicapa 

(MLP), que utiliza características locales para localizar automáticamente los núcleos de células escamosas. El flujo de 

trabajo propuesto está diseñado para detectar la presencia o ausencia de núcleos, lo cual está alineado con su uso en el 

cribado citológico. El modelo fue entrenado con dos conjuntos de datos públicos: CRIC y SIPaKMeD. A diferencia de otros 

trabajos en el estado del arte, nuestro modelo aprende de la información de imágenes completas alcanzando una precisión 

de 0.9526 y 0.9397 en los conjuntos de datos CRIC y Sipakmed, respectivamente. Nuestra propuesta ofrece un enfoque 

sencillo mientras mantiene un rendimiento comparable al de los modelos complejos reportados en la literatura. 
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INTRODUCTION 
 

Cervical cancer ranks as the fourth most diagnosed cancer in women globally, with around 604,000 new cases and 

340,000 deaths reported[1]. Approximately 90% of the 340,000 deaths resulting from this type of cancer occurred in 

countries with low to moderate income[1][2]. The main cause of this cancer is persistent human papillomavirus 

infections that cause approximately 95% of cervical cancers. Abnormal cells generally take 15 to 20 years to progress 

toward cancer, however, in women with a compromised immune system, such as those with untreated HIV, this 

progression can accelerate, taking only 5 to 10 years to develop into cancer[1][3][4]. 

 

The Pap smear test, also known as the Pap test or cervical smear, is the most widely used test to detect cervical 

cancer. This examination involves gathering cells from the cervix, which are then subjected to various chemical 

procedures before being sent to clinical laboratories. Subsequently, experts manually identify squamous cells and 

analyze morphological differences between normal and abnormal cell, by means of a microscope to identify any 

irregularities that could indicate the presence of cervical cancer or precancerous states[5][6][7]. The diagnosis of 

cervical cancer through Pap smears focuses on squamous cells, as these are the cells where precancerous and 

cancerous lesions develop. Pathologists analyze nuclei in these cells because malignant transformations manifest 

most prominently in the nucleus.   Nevertheless, this process is time-consuming and prone to a high incidence of 

false positives and false negatives due to human errors[5][8]. Additionally, it is highly inefficient, as specialists can only 

analyze four to five slides per day, leading to excessive workload and visual fatigue[5][7][9]. At the end of the day, 

diagnoses are significantly delayed, which has negative consequences and critical impact in prognosis and treatment 

of this pathology[6][10][11]. Therefore, to reduce the negative consequences of manual cell analysis in Pap smear tests, 

the scientific community has focused on the development of automated systems for segmentation and classification 

of squamous cells nuclei[12][13][14]. These systems have the capacity to reduce time, minimize the errors, and increase 

the daily number of analyzed slides[15][16]. By doing so, these systems positively impact the prognosis and treatment 

of cervical cancer, enabling more timely diagnosis[8][10]. However, the automatic localization of squamous cell nuclei 

represents a significant challenge due to the complexity and natural variability of Pap smear images. The complexity 

of the images is attributed to several factors: there are multiple cell types present in the images, leading to detect 

nuclei that do not belong to squamous cells, furthermore, some artifacts can be introduced to the Pap  smear sample 

during the chemical processes before the manual analysis, and these artifacts might result in a detection of many 

areas resembling squamous cell nuclei[8][17]. Meanwhile, the scientific community has made numerous contributions 

in this field, and efforts continue to enhance the performance of different automated diagnostic systems in terms of 

precision and reliability[8][18]. Nevertheless, the majority of contributions rely on databases of individual cell images, 

as demonstrated in recent studies conducted by Saguna et al.[19], Maesaroh et al.[20], Chandana et al.[21], Zhang et al.[22]. 

Such approaches involve a preprocessing step to isolate a single cell from each sensed image, by means of human 

intervention. This kind of procedure can be more time-consuming than manually analyzing the samples[23][24]. The 

described challenge and the commented limitation motivate the present research, which handles whole Pap smear 

images with a variable number of cells, and it presents a practical, automated system tailored to the localization of 

squamous cell nuclei—a crucial step in Pap smear image analysis. We implement an artificial neural network model 

for the automatic localization of squamous cell nuclei in whole images from Pap smear tests. The architecture chosen 

for this task was the Multilayer Perceptron (MLP)[12]. This work is specifically focused on nuclei localization as a 

preliminary step for subsequent cell analysis and classification for further diagnosis. The experimental setup 

includes two datasets: CRIC[25] and SIPaKMeD datasets[26].  
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The remainder of this manuscript is structured as follows: First, we review the state of the art in the classification 

and segmentation of squamous cell nuclei in Pap smear tests. The Materials and Methods section describes the 

proposed model, the datasets used, the data generation process, and the evaluation metrics. The Results section 

presents the experimental findings and their discussion. Finally, we provide the conclusions and outline potential 

directions for future work. 

 

The classification and segmentation of areas containing nuclei of squamous cells pose a challenge due to the 

diversity of cell types present in the images, not limited solely to squamous cells, thus leading to the existence of 

different types of nuclei. Overlapping or stacked cell regions may be encountered, complicating precise delineation. 

Additionally, color variations depending on cell depth and factors associated with artifacts contribute to background 

portions resembling cells[8][18][27]. 

 

Some studies in the literature have addressed the issue of classifying nuclei of squamous cells in images derived 

from Pap smear tests. For example, in the research conducted by Somasundaram et al.[28] the author presents a multi-

thresholding algorithm designed to segment the cytoplasm and nucleus regions from the background, the 

experiments were performed on the Pap-smear Benchmark Data dataset. Morphological operations are applied to 

rectify the segmented results. Additionally, a support vector machine (SVM) classifier is employed to categorize 

smear cells as normal or abnormal, based on features extracted from the segmented output. 

 

Wang et al.[8] proposed a Tree Domain structure combined with a screening algorithm to perform nucleus 

segmentation using CRIC and SIPaKMeD datasets. Initially, the model takes an input image and then proceeds to 

group regions corresponding to cells. Once the cell regions are grouped, regions of interest are extracted based on 

depth, upon which the Tree Domain technique is applied to obtain candidate regions for cell nuclei. Finally, the 

algorithm returns the image with segmented regions belonging to nuclei. 

 

Recently, more novel methods have been utilized for nucleus segmentation. Zhang et al.[22] introduce a new deep 

neural network (DNN) called the Global Context UNet (GC-UNet), which is specifically designed to effectively address 

complex settings and provide precise cell segmentation. The essence of GC-UNet lies in DenseNet, which acts as the 

main component, processing cell images and leveraging existing knowledge. A distinctive pooling module that is 

sensitive to context, including a gating model, is incorporated to efficiently encode ImageNet dataset pre-trained 

features, guaranteeing the preservation of crucial features at various levels. Moreover, a decoder with a global 

context attention mechanism is included to enhance global feature interaction and improve the accuracy of the 

predicted masks. The experiments were performed on two datasets: the MoNuSeg Dataset and the CoNSep dataset. 

 

The study by Saguna et al.[19] presents an efficient technique called WSAAE-CCD (Water Strider Algorithm with 

Autoencoder for Cervical Cancer Diagnosis) for the detection of cervical cancer, the authors used the SIPaKMeD Pap 

smear images dataset. The technique leverages medical image processing and intelligent models, demonstrating 

time and cost efficiency. The WSAAE-CCD model includes adaptive filtering for noise removal, kernelized fuzzy C-

means (KFCM) segmentation to identify affected cervical cells, and a Residual Network (ResNet5) for feature 

extraction. Finally, an autoencoder-based classification model is optimized using the Water Strider Algorithm (WSA). 

Experimental results demonstrate that the WSAAE-CCD technique enhances squamous cell nuclei detection 

performance, thereby contributing to more accurate cervical cancer classification. 
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The study conducted by Maesaroh et al.[20] focuses on cervical cancer classification using a Convolutional Neural 

Network (CNN) with transfer learning, based on the Xception architecture. The research allows to classify Pap smear 

images into two or four categories (normal cells, koilocytes, L-Sil, and H-Sil) using a dataset of 400 images from 

RepoMedUNM dataset. The methodology involves steps such as data preprocessing, augmentation, hyperparameter 

tuning, and model evaluation. The CNN model achieved 100% accuracy in the 2-class classification and 85% accuracy 

in the 4-class classification, demonstrating its effectiveness in detecting and classifying squamous cell nuclei. 

 

In the study conducted in [29], the authors propose ensemble models of convolutional neural networks to extract 

features and subsequently classify the Pap smear images. In this case, they process entire images, which are then 

segmented into individual cells for classification. In the method proposed in [30], full images from the CRIC dataset[25] 

are used. However, a preprocessing step is applied to crop the images into individual cells using the metadata 

provided by the dataset. Subsequently, the classification is performed at the cellular level. 

 

The work proposed by Chandana et al.[21] explores the use of Deep Learning techniques for automated screening 

and classification of cervical cancer cells. Utilizing the SIPaKMeD Pap smear image dataset, the proposed method 

applies the ResNet-50 architecture to classify cervical cells. The results indicate that ResNet-50 achieved the highest 

accuracy of 91.04%, outperforming both Inception-V3 and MobileNet models. Furthermore, the research integrates 

Explainable Artificial Intelligence (XAI) techniques, specifically LIME, to enhance the interpretability and 

transparency of the diagnostic process, thereby improving the reliability of automated squamous cell nuclei and 

cervical cancer detection. 

 

In this study, we propose an MLP model that utilizes local features for squamous cell nuclei localization in Pap 

smear images—a critical step in cervical cancer diagnosis. Unlike most state-of-the-art methods, which typically rely 

on convolutional neural networks (CNNs) with high computational complexity and are trained on small image 

patches, our approach uses a less complex model and processes entire images. These full images, which may contain 

a variable number of cells, introduce additional complexity in the task of detecting squamous cell nuclei. We compare 

our proposed model with both classical and state-of-the-art classification algorithms using two public datasets: 

CRIC[25] and SiPakMed[26]. Our experimental results demonstrate that the proposed model performs strongly in this 

task. The proposal constitutes a key step toward the clinical implementation of cytology automation. 

MATERIALS AND METHODS 
 

In this section, the details of the proposal are presented. The datasets used are described, and a comprehensive 

explanation of the two variants of the approach is provided. The rationale behind proposing these two variants is 

highlighted, along with the advantages of one over the other. Additionally, the inherent complexity of segmenting 

this type of imagery is discussed. Furthermore, the metrics employed to evaluate the performance of the models are 

outlined. The training and evaluation phases are also detailed, including the methodologies and procedures followed 

to ensure robust and reliable results.  

 

The datasets used in this research are enlisted below: 

 

• CRIC dataset comprising 400 images with dimensions of 1376 x 1020 and 150 dpi resolution[25]. CRIC 

(Center for Recognition and Inspection of Cells) is a collaborative network of researchers dedicated to 

supplying cell collections to the scientific community. Images were acquired using conventional bright-field 
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microscopy with a 40× objective and 10× eyepiece, with a Zeiss AxioCam MRc digital camera mounted on a 

Zeiss AxioImager.Z2 microscope. Certified cytopathologists performed manual identification of squamous 

cells and classified them in accordance with the Bethesda System nomenclature protocol[36]. The 

annotations, available in CSV and JSON formats, include the centroid coordinates of each nucleus. This 

information allows for the extraction of square patches (90–100 pixels per side) centered on the nuclei. 

According to cytopathological expertise, these regions encompass relevant features of both the nucleus and 

the adjacent cytoplasm.  All images are organized as a collection of Figshare[25] and are licensed under 

Creative Commons Attribution 4.0 International framework. Figure 1 displays two annotated images taken 

from the CRIC dataset. 

 

• The SIPaKMeD (Single-cell Images of PAP Smear for Cervical Cancer Detection using KMeans Clustering and 

Medical Diagnosis) dataset consists of 4,049 high-resolution images (2048 × 1536 pixels) of individually 

annotated squamous cells, manually cropped from 966 clustered cell images obtained from Pap smear 

slides, which are also included in the dataset[26]. Image acquisition was carried out using a CCD camera 

(Infinity 1, Lumenera) mounted on an OLYMPUS BX53F optical microscope. The dataset adopts a non-

Bethesda classification for squamous cells. In each image, the cytoplasmic and nuclear regions of the 

squamous cells are manually outlined by experts. As a result of this procedure the coordinates of each 

nucleus and cytoplasm are saved in .dat files. 

 

Both datasets are established benchmarks, comprising color images represented in RGB format. All images from 

the datasets encompass a wide variety of squamous cells, alongside other cell types present in the samples, as well 

as artifacts. This ensures that experiments are conducted with diverse images, thus avoiding bias in the results with 

clean or easily classifiable images. The annotated images from the CRIC and SIPaKMeD datasets assists us in 

generating masks to extract the pixels to be used for the training and testing phases. 

 

 

FIGURE 1. Two images of squamous cells from Pap smear tests, sourced from the CRIC dataset. 
Red rectangles highlight the annotated squamous cells, while green rectangles mark artifacts and 

other cell types. 
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FIGURE 2. Two images of squamous cells from Pap smear tests, sourced from the SIPaKMeD 
dataset. Red polygons highlight nuclear and cytoplasmic boundaries using expert-provided 

coordinates from the dataset. Green rectangles enclose other cell types and artifacts. 
 

As illustrated in Figures 1 and 2, detecting squamous cell nuclei in whole images poses significant challenges. Figure 

1 displays squamous cells enclosed in red rectangles, while Figure 2 shows their nuclei and cytoplasm outlined with 

red contours. Both images reveal other cell types and artifacts marked by green rectangles, where some artifacts 

closely resemble squamous nuclei in both morphology and color intensity. Furthermore, nuclei from non-squamous 

cells exhibit visual similarities that may lead to misclassification. 

 

This complexity suggests that conventional RGB channels alone are insufficient for robust model training. Our 

approach addresses this by incorporating local pixel-level features specific to nuclear regions. By enriching the 

feature space with other patterns, the model can better distinguish true squamous nuclei from confounding 

elements, thereby reducing errors from artifacts or other cell types while maintaining localization sensitivity. 
 

The proposal consists of two variants of a Multilayer Perceptron neural network. For the first variant, Figure 3, the 

MLP only receives information of R, G and B channels for each pixel. We called this model MLP3. The second variant, 

Figure 4, incorporates additional spatial local characteristics into the model. This model is called MLP33. 

 

FIGURE 3. Flowchart illustrating the MLP3 approach for squamous cell nucleus localization using 
RGB-based features. In the image on the right, red-highlighted regions denote the pixels identified 

as part of the located nuclei. 
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FIGURE 4. Flowchart illustrating the MLP33 approach for squamous cell nucleus localization using RGB 
and local features. In the image on the right, red-highlighted regions denote the pixels identified as 

part of the located nuclei. 
 

It was observed that the MLP3 adequately classified the pixels in our data set using only their RGB features, see 

Figure 3. However, some pixels in the target class were misclassified, which was attributed to factors such as the 

density of cells present in the image, cell overlap, and the presence of artifacts, see Figures 1 and 2. Therefore, 

leveraging the versatility of the MLP model architecture to introduce complexity, another approach for classifying 

pixels that represent squamous cell nuclei is proposed, the MLP33. This approach incorporates RGB features along 

with additional spatial local characteristics into the model, including RGB values of neighboring pixels, as well as the 

average and standard deviation per RGB channel. The process is described in Figure 4. We consider a neighborhood 

of 8 pixels.  
 

Thirty images were selected from each dataset, and manual segmentation masks were created to extract target 

pixels (see Figure 5). To extract the features for the MLP3 model, which takes only the three RGB values as input, 

manually generated masks are used. These masks are created based on data provided by experts for each dataset, 

which consists of nucleus location coordinates[25][26]. Using this information, the masks are generated to identify 

nucleus pixels in the images, allowing the extraction of their corresponding RGB values, as illustrated in Figure 6.  

 

 

FIGURE 5. The image on the left represents an example from CRIC dataset.  
The image on the right corresponds to the generated mask. 
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FIGURE 6. Selecting RGB features from neighboring pixels of the reference pixel (the inner red square). 
 

To extract the features for the MLP33 model, the RGB values of each pixel labeled as either nucleus or background 

were considered, along with the RGB values of its eight nearest neighbors, as illustrated in Figure 6. Starting from a 

labeled pixel (highlighted in red in the image), the RGB values of the surrounding pixels were included to form the 

training set. In addition, six statistical features were incorporated: the mean and standard deviation for each RGB 

channel. This results in a total of 33 features used for training. Table 1 provides a summary of the features used in 

the MLP33 model. 

 

The procedure described above resulted in a total of 1,869,023 and 3,927,565 data for the CRIC and SIPaKMeD sets 

respectively. 

 

TABLE 1. Total number of features taken for model training. 

Pixel Features 
Reference pixel R1 G1 B1 

Neighbor 1 R2 G2 B2 
Neighbor 2 R3 G3 B3 
Neighbor 3 R4 G4 B4 
Neighbor 4 R5 G5 B5 
Neighbor 5 R6 G6 B6 
Neighbor 6 R7 G7 B7 
Neighbor 7 R8 G8 B8 
Neighbor 8 R9 G9 B9 

Means per channel Mean R Mean G Mean B 
Standard deviation per 

channel 
Std R Std G Std B 

Total per channel 11 11 11 
Total features 33 

 

The proposed approach for squamous cell nucleus localization is conducted through pixel classification, labeling 

them as 1 (nucleus class) and 0 (background class). The extracted features for each pixel are used for the training 

step in correspondence to models MLP3 and MLP33, see Figure 3 and Figure 4. 

 

According to various studies[10][13], using 60–80% of the available data for training is considered appropriate to 

avoid overfitting. Based on these findings, we split the dataset as follows: 60% for training and 40% for testing. 

Additionally, increasing the training proportion beyond 60% resulted in significantly longer training times, ranging 

from 3 to 5 days.  
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During data preparation for the training phase, we selected samples to ensure balanced class representation, 

resulting in 934,512 and 934,511 samples for the nucleus and background classes from the CRIC dataset, and 

1,963,783 and 1,963,782 samples from the SIPaKMeD dataset. 

 

The MLP3 and MLP33 models were trained for each dataset using the computational resources of the Centro 

Nacional de Supercómputo of the Instituto Potosino de Investigación Científica y Tecnológica, A.C. Four nodes were 

employed, each equipped with 192 GB of RAM and 2 processors containing 16 physical cores each. Anaconda with 

Keras and TensorFlow 2.5 libraries were used for this purpose. Table 2 summarizes the data split for training, 

validation, and testing, along with the model architecture and its corresponding parameters. 

 

TABLE 2. MLP configuration and data distribution for the CRIC and SIPaKMeD dataset. 

Parameter Value 
Training Data 60 % 

Test Data 40 % 
Number of Parameters 12,673 

Input Dimension 33 
Output Dimension 1 
Number of Hidden 

Layers 
2 

Nodes per Hidden Layer [128, 64] 

Loss 
Binary Cross 

entropy 
Optimizer Adam 
Batch Size 2048 

Learning Rate 0.001 
Epochs 200 

 

To assess the performance of the proposed models, the following metrics were utilized: Accuracy, recall, specificity, 

and F1 score[31][32][37], see Table 3. 

 

TABLE 3. Performance metrics for classifier evaluation. 

Metric Formula Description 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Calculates the percentage of accurately 
classified samples out of the total 

number of samples. 

Recall 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Measures the proportion of actual 
positive samples that are correctly 

identified. Also known as Sensitivity or 
True Positive Rate. 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

Calculates the percentage of true 
negative samples that are accurately 
recognized. Also referred to as True 

Negative Rate. 

F1 Score 

2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
where: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Harmonic mean of precision and recall, 
providing a balance between the two 

metrics. 

IoU 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

Measures the spatial overlap accuracy 
between predicted regions and ground 

truth annotations. 
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RESULTS AND DISCUSSION 
 

To enhance the classifier's performance, training was conducted by a cross-validation approach and varying the 

parameters of the layers and nodes within the MLP model to increase precision. It was observed that increasing the 

number of layers and nodes in the network architecture did not yield a substantial improvement. In fact, in most 

cases, precision decreased. Consequently, it was decided to maintain the network architecture with two hidden 

layers, one consisting of 128 nodes and the other of 64 nodes. Additionally, the Adam optimizer with a learning rate 

of 0.001 was employed. The number of epochs was set to 200, as it was observed that adding more epochs did not 

lead to further improvements; instead, the model tended to lose generalizability as you can see in Figure 7 and Figure 

8. Table 4 shows the numerical results in the test set achieved by MLP3 and MLP33 variants.  

 

 

FIGURE 7. Accuracy plot for the training and validation sets of the CRIC dataset. 
 

 

FIGURE 8.  Accuracy plot for the training and validation sets of the SIPaKMeD dataset. 
 

TABLE 4. The Accuracy, Recall, Specificity and F1 Scores values for two variants of the proposed model 
in the Test set: MLP3 and MLP33. 

Dataset Model Accuracy Recall Specificity F1 Score 

CRIC MLP33 0.9526 0.9695 0.9372 0.9530 

 MLP3 0.9255 0.9271 0.9084 0.9271 

SIPaKMeD MLP33 0.9397 0.9614 0.9213 0.9410 

 MLP3 0.9255 0.9345 0.9082 0.9279 
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Based on the experimental results shown in Table 4, we selected the MLP33 model, described in Section “The 

Proposal”, which incorporates not only RGB features but also local characteristics, along with channel-wise averages 

and standard deviations. It is worth noting that for the two datasets considered, the MLP33 model consistently yields 

higher evaluation metrics. 

 

To ensure fair benchmarking against our proposed model, we additionally trained classical machine learning 

models using the same features. All models were implemented in Python with Keras and Scikit-learn, following 

identical data preprocessing steps and the same 60/40 train-test split. We implemented the 5-fold cross-validation 

in order to analyze the overfitting of all studied models.  

 

The classical classifiers included in this study, were: 

• Support Vector Machine (SVM) with Radial Basis Kernel. 

• K-Nearest Neighbors (KNN) with the number of neighbors set to 4. 

• Decision Trees using the default configuration provided by Keras. 

• Random Forest with 50 trees in the ensemble. 

• Bayesian Gaussian Mixture Model (GMM) with 4 Gaussian components in the mixture. 

 

Tables 5 and 6 present the cross-validation results, for the CRIC and SIPaKMeD datasets respectively. 

 

TABLE 5. Cross-validation performance on the CRIC dataset:  
mean metrics ± standard deviation 

Model Mean accuracy on training Mean Accuracy on validation 

MLP33 0.9504 ± 0.0015 0.9498 ± 0.0014 

SVM 0.9318 ± 0.0001 0.9317 ± 0.0005 

K Nearest Neighbor 0.9589 ± 0.0001 0.9460 ± 0.0006 

Decision Trees 0.9247 ± 0.0002 0.9243 ± 0.0003 

Random Forest 0.9998 ± 0.0000 0.9469 ± 0.0007 

Bayesian Gaussian mixture 0.8874 ± 0.0001 0.8872 ± 0.0005 

 

TABLE 6. Cross-validation performance on the SIPaKMeD dataset on train set:  
mean metrics ± standard deviation 

Model Mean accuracy on training Mean Accuracy on validation 

MLP33 0.9316 ± 0.0007 0.9315 ± 0.0009 

SVM 0.9312 ± 0.0005 0.9310 ± 0.0004 

K Nearest Neighbor 0.9388 ± 0.0002 0.9388 ± 0.0002 

Decision Trees 0.8937 ± 0.0002 0.8934 ± 0.0002 

Random Forest 0.9998 ± 0.0000 0.9382 ± 0.0003 

Bayesian Gaussian mixture 0.8908 ± 0.0039 0.8909 ± 0.0041 

 

As shown in Tables 5 and 6 the training results for the CRIC and SIPaKMeD datasets respectively demonstrate 

consistent performance across most classifiers. The low standard deviations across cross-validation folds reflect 

consistent metric performance, providing evidence of model stability. For both the CRIC and SIPaKMeD datasets, the 

average performance metrics are satisfactory, indicating good generalization and no evidence of overfitting in the 
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training set. 

Below we compare the MLP33 with other classical methods and state-of-the-art models from the reviewed 

literature. No preprocessing was performed prior to training to ensure a fair comparison. Table 7 and Table 8 present 

the comparison considering the CRIC and SIPaKMeD datasets, on the test set respectively.  

 

The state-of-the-art results used for comparison were taken directly from the reported findings in the original 

research papers, which did not require any additional implementation to replicate these results. 

 

TABLE 7. Performance Comparison of the MLP33 model with classical and  
state-of-the-art classifiers on the CRIC dataset. 

Model Accuracy Recall Specificity F1 score 

MLP33 0.9526 0.9695 0.9372 0.9530 

SVM 0.9262 0.9262 0.9033 0.9279 

K Nearest Neighbor 0.9464 0.9576 0.9351 0.9471 

Decision Trees 0.9158 0.913 0.9185 0.9155 

Random Forest 0.9472 0.9698 0.9246 0.9483 

Bayesian Gaussian mixture 0.9029 0.9244 0.8814 0.9050 

DL-Ensemble, Daniz et. al.[29] 0.9600 0.9600 0.9600 0.9600 

Hierarchical Feature-Based, Daniz et. al.[30] 0.9450 0.8348 0.9670 0.8351 

Shape-based Features,Terra et. al.[33] 0.9420 0.9510 0.9170 0.9600 

 

TABLE 8. Performance Comparison of the MLP33 model with classical and  
state-of-the-art classifiers on the SIPaKMeD dataset. 

Model Accuracy Recall Specificity F1 score 

MLP33 0.9397 0.9614 0.9213 0.9410 

SVM 0.9395 0.9608 0.9321 0.9355 

K Nearest Neighbor 0.9392 0.9565 0.9219 0.9401 

Decision Trees 0.9003 0.8973 0.9032 0.8999 

Random Forest 0.9387 0.9589 0.9185 0.9399 

Bayesian Gaussian mixture 0.8215 0.9584 0.6845 0.843 

CNN+PCA, GV et. al.[34]  0.9637 N/A 0.9983 0.9963 

 

As shown in Tables 7 and 8, the model consistently achieves high recall values (0.9695 for CRIC and 0.9614 for 

SIPaKMeD), indicating its effectiveness in identifying the majority of nucleus pixels across different datasets. 

Although false positives are present, the F1 scores remain high (0.9530 for CRIC and 0.9410 for SIPaKMeD), 

reflecting a favorable balance between sensitivity and precision. In the context of cytology screening, this trade-off 

is acceptable—and even desirable—as such applications typically prioritize sensitivity over specificity to minimize 

the risk of missing clinically relevant cells. 

 

Although full images are not analyzed in [29], this study is included to highlight the robustness of the proposed 

model. It is important to note that, while the reviewed state-of-the-art studies report higher accuracy, they rely on 

models that use individual cells, even though these cells are derived from whole images. This distinction directly 

impacts the complexity of the problem. Our proposed method, which processes the entire image without the 

preprocessing and cropping steps used in [30], demonstrates higher performance. This confirms the relevance of 
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our approach for processing full images. 

 

As observed in [34], their model achieves higher accuracy than ours; however, their approach does not process 

entire images. Instead, they randomly crop an unspecified area from the original image, which is then resized to 

224x224 for processing with the ResNet-34 network[35]. This method excludes a significant portion of the original 

image, leaving many cells out of the analysis. Therefore, it does not operate on fully intact images, but rather on 

“semi-complete” ones. For the SIPaKMeD dataset, only one state-of-the-art result is mentioned[34], as an exhaustive 

search revealed no additional literature utilizing full-slide images. Most studies focus solely on single-cell images 

rather than on entire images. 

 

In short, after analyzing the results and comparing them with state-of-the-art findings, it can be determined that 

our proposed model, performs comparably to the results reported in the literature. Notably, these studies often 

employ more complex and computationally expensive models. Our approach demonstrates that it is possible to 

achieve competitive performance without resorting to the increased complexity of those models. 

 

To validate the robustness of our MLP33 architecture, we conducted cross-dataset testing. The model trained on 

the CRIC dataset achieved 85.91 % accuracy, recall, and specificity, along with an F1-score of 86.36 % on the 

SIPaKMeD test set (see Table 9), indicating a moderate level of domain transfer. This represents an 8.9% drop in F1-

score compared to its original performance on the CRIC test set (95.26%). In contrast, the model trained on the 

SIPaKMeD dataset exhibited stronger generalization to the CRIC test set, attaining 90.69% accuracy, 93.53% recall, 

87.69% specificity, and an F1-score of 90.95% (see Table 10). These findings suggest that the broader morphological 

variability within SIPaKMeD enhances the model's ability to learn transferable features, thereby improving cross-

domain performance. 
 

TABLE 9. Cross-dataset performance of CRIC-trained MLP33 

Test set Accuracy Recall Specificity F1 Score 

CRIC 
(native) 

0.9526 0.9695 0.9372 0.9530 

SIPaKMeD 0.8591 0.8591 0.8591 0.8636 

 

 

TABLE 10. Cross-dataset performance of SIPaKMeD-trained MLP33 

Test set Accuracy Recall Specificity F1 Score 

SIPaKMeD 
(native) 

0.9397 0.9614 0.9213 0.9410 

CRIC 0.9069 0.9353 0.8786 0.9095 

 

Figure 9 depicts the classification results of the MLP33 model. Pixels classified as nucleus are highlighted in red. 

Comparing the classifier's results shown in Figure 9(e) and Figure 9(f) with the ground truth masks in Figure 9 (c) 

and Figure 9 (d), we can observe certain areas where pixels are incorrectly classified as nucleus (some of these 

misclassified areas are enclosed in black squares). These misclassified pixels represent background areas mistakenly 

identified as nucleus, however this does not substantially affect the determination of a nucleus region, since the 

errors occur at pixel level. 
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(c) (d) 

  

(e) (f) 

FIGURE 9. Graphical representation of the proposal: panels (a) and (b) contain images examples from 
CRIC, and SIPaKMeD datasets, respectively. Images in the second row, (c) and (d) correspond to the 

ground truth of images in the first row. Images in panels (e) and (f) represent the overlaid classification 
results onto the images (a) and (b). 

 

It was observed that the proposed model performed well despite the variety and complexity of the data. The model 

achieved better performance on the CRIC dataset. It had more difficulty classifying nucleus pixels in the SIPaKMeD 

dataset due to the larger variety of images and characteristics, see Figure 9(f) and Figure 9(e). 

 

Figure 10 presents additional visual results of the MLP33 model on two images: one from the CRIC dataset and 

another from the SIPaKMeD dataset. 
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FIGURE 10. Graphical representation of the proposal: panels (a) and (b) contain images examples from 
CRIC, and SIPaKMeD datasets, respectively. Images in the second row, (c) and (d) correspond to the 

ground truth of images in the first row.  Images in panels (e) and (f) represent the overlaid 
classification results onto the images (a) and (b). 

 

To further evaluate the performance of our proposal, we employ the Intersection over Union (IoU) metric. Thirty 

images from the CRIC and SIPaKMeD datasets were analyzed using the MLP33 model. The Intersection over Union 

(IoU) metric was computed, resulting in average IoU scores of 0.5214 for CRIC and 0.4622 for SIPaKMeD. These 

results are presented in Table 11. 

 

TABLE 11. Assessment of MLP33 Performance Using IoU on the CRIC and SIPaKMeD datasets. 

Metric CRIC Dataset SIPaKMeD Dataset 
Min IoU 0.3415 0.3187 
Max IoU 0.8909 0.6142 

Mean IoU 0.5214 0.4622 
Std Dev ±0.1436 ±0.0896 

 

The results indicate that our approach does not precisely capture the morphology of nuclei, as it performs semantic 

segmentation rather than object-level segmentation. This distinction is clarified below: 

 

• The MLP model was designed for nuclei localization rather than fine-grained segmentation. Its primary goal 

is to identify regions containing nuclei (to enable subsequent bounding box extraction; see the Results 

section), without aiming for pixel-perfect boundaries. This design rationale supports our use of pixel-wise 
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classification metrics—Accuracy, Recall, Specificity, and F1-score—instead of region-based metrics such as 

Intersection over Union (IoU). 

 

• Classification errors made by the MLP can introduce segmentation artifacts that are penalized by the IoU 

metric. Nevertheless, the model effectively enables nuclei detection, even when boundary delineation is 

imperfect. While IoU emphasizes contour precision, our workflow focuses on determining the presence or 

absence of nuclei, which aligns with the intended purpose of our model. 

 

Figure 11 provides a visual illustration of these points. 

 

  

0.5220 ground truth 

  

0.3899 ground truth 

 

FIGURE 11. Left panel: MLP33 model predictions evaluated using the IoU metric. Misclassified artifacts 
and regions are marked with green bounding boxes, and segmentation errors are indicated with black 

bounding boxes. Right panel: corresponding ground truth masks. 
 

The examples in the Figure 11 illustrate that, while the full extent of each nucleus may not be captured, the model 

successfully identifies their presence or absence. Red areas denote the classifier’s results. Green bounding boxes 

mark misclassified artifacts and regions, whereas black bounding boxes indicate nuclei with segmentation errors 

either over-segmentation (excessive area) or under-segmentation (incomplete coverage). 

 

The proposed model demonstrates a more efficient classification of nucleus pixels compared to the other models. 

Figure 12 illustrates that the proposed model outperforms others in classifying nucleus pixels. The prediction in 

Figure 12(c) shows the best alignment with the ground truth mask in Figure 12(b). Although some small background 

areas are misclassified, the segmentation of the nuclei is more consistent with the ground truth mask. This becomes 

even more evident when comparing the ground truth mask with the results of the other classifiers. For example, a 

preliminary inspection reveals that both the Support Vector Machine and the Bayesian classifier incorrectly labeled 

a substantial portion of the background as nucleus regions. Furthermore, upon closer inspection of the other models, 

small artifacts found in the background are classified as part of the nuclei, demonstrating the generalization 

capability of our proposed model in pixel classification tasks, considering local features. 
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(g) (h) 

  

FIGURE 12. A graphical comparison of our model with other classification models. (a) Image example 
from CRIC dataset, (b) the ground truth image, classification results of (c) our model, (d) SVM, (e) K-

nearest neighbors, (f) Random Forest, (g) Decision tree, and (h) Bayes classifier. 

 

After detecting the nuclei, the subsequent stage of our research involves postprocessing and connected component 

analysis. In alignment with practices used by cytopathologists in the CRIC dataset, we intend to extract square 

patches (90–100 pixels per side) centered on the centroid of each detected nucleus. This will enable the model to 

capture both nuclear and cytoplasmic features, supporting more comprehensive automated analysis of Pap smear 

images. 
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CONCLUSIONS AND FUTURE WORK 
 

In this work was proposed an Artificial Neural Network model based on the Multilayer Perceptron, for the 

classification of pixels belonging to the nucleus of squamous cells.  RGB characteristics were considered, and 

additionally, local characteristics were added, which include: RGB components of their 8 nearest neighbors, channel-

wise averages and standard deviations. Furthermore, two public datasets were considered. The proposed model 

achieved an accuracy, recall, specificity, and F1 score of 0.9526, 0.9695, 0.9372, and 0.9530, respectively, on the CRIC 

dataset; and 0.9397, 0.9614, 0.9213, and 0.9410 on the SIPaKMeD dataset.  

 

Our approach enables automatic pixel-wise localization of squamous cell nuclei directly on full Pap smear images, 

without the need for manual cell isolation or cropping. The proposed model advances the development of clinically 

viable automated screening solutions. 

 

It was confirmed that classical supervised learning models remain useful in complex tasks like the one addressed 

by this proposed model. We observed that the performance metrics surpass those of the reviewed literature using 

more complex and resource-intensive models. Therefore, it is important to continue considering these classical 

models when performing complex classification tasks, such as segmenting nuclei of squamous cells to automate 

cervical cancer diagnoses. 

 

As future work, alternative approaches are proposed to enhance the performance in the classification of squamous 

cell nuclei. Additionally, possible improvements can be achieved by postprocessing, connected component analysis 

and bounding box extraction on the obtained results. On the other hand, the use of convolutional neural networks, 

particularly U-Net architectures, it is suggested to perform nucleus segmentation. Subsequently, other models will 

be applied to characterize whether cells are normal or abnormal based on the segmentation results, aiming to 

automatically detect malignant cells within Pap smear medical tests. 
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