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ABSTRACT

Cervical cancer is the fourth most commonly diagnosed cancer among women worldwide and it is a leading cause of death
in women. Diagnosis is typically performed manually by analyzing squamous cells in Pap smear tests, a process that is
time-consuming and prone to a high rate of errors. The adoption of automated analysis methods has significantly reduced
both diagnostic time and human errors. A key step in this automated pipeline is the detection of squamous cell nuclei. In
this study, we propose a Multilayer Perceptron (MLP) artificial neural network model that includes local image features
to automatically locate squamous cell nuclei. The proposed workflow is intended to detect the presence or absence of
nuclei, which aligns with its use in cytology screening. For training we utilized two publicly available datasets: CRIC and
SIPaKMeD. Unlike many state-of-the-art approaches, our method learns directly from entire images rather than relying
on pre-segmented regions. It achieves accuracies of 0.9526 and 0.9397 on the CRIC and SIPaKMeD datasets, respectively.
Our approach offers a simple yet effective solution, delivering performance on par with more complex models reported in

the literature.
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RESUMEN

El cancer de cuello uterino es el cuarto cancer mas cominmente diagnosticado entre las mujeres en todo el mundo y sigue
siendo una de las principales causas de muerte en las mujeres. El diagndstico generalmente se realiza manualmente
mediante el andlisis de células escamosas en pruebas de Papanicolaou, un proceso que requiere mucho tiempo y es
propenso a una alta tasa de errores. La adopciéon de métodos de andlisis automatizados ha reducido significativamente
tanto el tiempo de diagndstico como los errores humanos. Un paso clave en este proceso automatizado es la deteccion de
nucleos de células escamosas. En este estudio, se propone un modelo de red neuronal artificial tipo Perceptrén Multicapa
(MLP), que utiliza caracteristicas locales para localizar automaticamente los nucleos de células escamosas. El flujo de
trabajo propuesto esta disefiado para detectar la presencia o ausencia de nucleos, lo cual esta alineado con su uso en el
cribado citolégico. El modelo fue entrenado con dos conjuntos de datos publicos: CRIC y SIPaKMeD. A diferencia de otros
trabajos en el estado del arte, nuestro modelo aprende de la informacién de imagenes completas alcanzando una precision
de 0.9526 y 0.9397 en los conjuntos de datos CRIC y Sipakmed, respectivamente. Nuestra propuesta ofrece un enfoque
sencillo mientras mantiene un rendimiento comparable al de los modelos complejos reportados en la literatura.
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INTRODUCTION

Cervical cancer ranks as the fourth most diagnosed cancer in women globally, with around 604,000 new cases and
340,000 deaths reported!ll. Approximately 90% of the 340,000 deaths resulting from this type of cancer occurred in
countries with low to moderate incomel!l2l, The main cause of this cancer is persistent human papillomavirus
infections that cause approximately 95% of cervical cancers. Abnormal cells generally take 15 to 20 years to progress
toward cancer, however, in women with a compromised immune system, such as those with untreated HIV, this
progression can accelerate, taking only 5 to 10 years to develop into cancer[1B14],

The Pap smear test, also known as the Pap test or cervical smear, is the most widely used test to detect cervical
cancer. This examination involves gathering cells from the cervix, which are then subjected to various chemical
procedures before being sent to clinical laboratories. Subsequently, experts manually identify squamous cells and
analyze morphological differences between normal and abnormal cell, by means of a microscope to identify any
irregularities that could indicate the presence of cervical cancer or precancerous stateslSl6ll7l. The diagnosis of
cervical cancer through Pap smears focuses on squamous cells, as these are the cells where precancerous and
cancerous lesions develop. Pathologists analyze nuclei in these cells because malignant transformations manifest
most prominently in the nucleus. Nevertheless, this process is time-consuming and prone to a high incidence of
false positives and false negatives due to human errors/5l8l. Additionally, it is highly inefficient, as specialists can only
analyze four to five slides per day, leading to excessive workload and visual fatiguelSII7lI91. At the end of the day,
diagnoses are significantly delayed, which has negative consequences and critical impact in prognosis and treatment
of this pathologyl6ll101(11], Therefore, to reduce the negative consequences of manual cell analysis in Pap smear tests,
the scientific community has focused on the development of automated systems for segmentation and classification
of squamous cells nucleil!2ll13114]. These systems have the capacity to reduce time, minimize the errors, and increase
the daily number of analyzed slides[!51l16l. By doing so, these systems positively impact the prognosis and treatment
of cervical cancer, enabling more timely diagnosis/8ll10l. However, the automatic localization of squamous cell nuclei
represents a significant challenge due to the complexity and natural variability of Pap smear images. The complexity
of the images is attributed to several factors: there are multiple cell types present in the images, leading to detect
nuclei that do not belong to squamous cells, furthermore, some artifacts can be introduced to the Pap smear sample
during the chemical processes before the manual analysis, and these artifacts might result in a detection of many
areas resembling squamous cell nucleil8ll17l. Meanwhile, the scientific community has made numerous contributions
in this field, and efforts continue to enhance the performance of different automated diagnostic systems in terms of
precision and reliabilityl8ll18], Nevertheless, the majority of contributions rely on databases of individual cell images,
as demonstrated in recent studies conducted by Saguna et al.[19], Maesaroh et al.[20], Chandana et al.[21], Zhang et al.[22].
Such approaches involve a preprocessing step to isolate a single cell from each sensed image, by means of human
intervention. This kind of procedure can be more time-consuming than manually analyzing the samples[231i24]. The
described challenge and the commented limitation motivate the present research, which handles whole Pap smear
images with a variable number of cells, and it presents a practical, automated system tailored to the localization of
squamous cell nuclei—a crucial step in Pap smear image analysis. We implement an artificial neural network model
for the automatic localization of squamous cell nuclei in whole images from Pap smear tests. The architecture chosen
for this task was the Multilayer Perceptron (MLP)['2l. This work is specifically focused on nuclei localization as a
preliminary step for subsequent cell analysis and classification for further diagnosis. The experimental setup
includes two datasets: CRIC25] and SIPaKMeD datasetsl26l.
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The remainder of this manuscript is structured as follows: First, we review the state of the art in the classification
and segmentation of squamous cell nuclei in Pap smear tests. The Materials and Methods section describes the
proposed model, the datasets used, the data generation process, and the evaluation metrics. The Results section
presents the experimental findings and their discussion. Finally, we provide the conclusions and outline potential
directions for future work.

Related works

The classification and segmentation of areas containing nuclei of squamous cells pose a challenge due to the
diversity of cell types present in the images, not limited solely to squamous cells, thus leading to the existence of
different types of nuclei. Overlapping or stacked cell regions may be encountered, complicating precise delineation.
Additionally, color variations depending on cell depth and factors associated with artifacts contribute to background
portions resembling cells[8I[181[27],

Some studies in the literature have addressed the issue of classifying nuclei of squamous cells in images derived
from Pap smear tests. For example, in the research conducted by Somasundaram et al.[28] the author presents a multi-
thresholding algorithm designed to segment the cytoplasm and nucleus regions from the background, the
experiments were performed on the Pap-smear Benchmark Data dataset. Morphological operations are applied to
rectify the segmented results. Additionally, a support vector machine (SVM) classifier is employed to categorize
smear cells as normal or abnormal, based on features extracted from the segmented output.

Wang et al.l8] proposed a Tree Domain structure combined with a screening algorithm to perform nucleus
segmentation using CRIC and SIPaKMeD datasets. Initially, the model takes an input image and then proceeds to
group regions corresponding to cells. Once the cell regions are grouped, regions of interest are extracted based on
depth, upon which the Tree Domain technique is applied to obtain candidate regions for cell nuclei. Finally, the
algorithm returns the image with segmented regions belonging to nuclei.

Recently, more novel methods have been utilized for nucleus segmentation. Zhang et al.[?2] introduce a new deep
neural network (DNN) called the Global Context UNet (GC-UNet), which is specifically designed to effectively address
complex settings and provide precise cell segmentation. The essence of GC-UNet lies in DenseNet, which acts as the
main component, processing cell images and leveraging existing knowledge. A distinctive pooling module that is
sensitive to context, including a gating model, is incorporated to efficiently encode ImageNet dataset pre-trained
features, guaranteeing the preservation of crucial features at various levels. Moreover, a decoder with a global
context attention mechanism is included to enhance global feature interaction and improve the accuracy of the
predicted masks. The experiments were performed on two datasets: the MoNuSeg Dataset and the CoNSep dataset.

The study by Saguna et al.['% presents an efficient technique called WSAAE-CCD (Water Strider Algorithm with
Autoencoder for Cervical Cancer Diagnosis) for the detection of cervical cancer, the authors used the SIPaKMeD Pap
smear images dataset. The technique leverages medical image processing and intelligent models, demonstrating
time and cost efficiency. The WSAAE-CCD model includes adaptive filtering for noise removal, kernelized fuzzy C-
means (KFCM) segmentation to identify affected cervical cells, and a Residual Network (ResNet5) for feature
extraction. Finally, an autoencoder-based classification model is optimized using the Water Strider Algorithm (WSA).
Experimental results demonstrate that the WSAAE-CCD technique enhances squamous cell nuclei detection
performance, thereby contributing to more accurate cervical cancer classification.
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The study conducted by Maesaroh et al.[20] focuses on cervical cancer classification using a Convolutional Neural
Network (CNN) with transfer learning, based on the Xception architecture. The research allows to classify Pap smear
images into two or four categories (normal cells, koilocytes, L-Sil, and H-Sil) using a dataset of 400 images from
RepoMedUNM dataset. The methodology involves steps such as data preprocessing, augmentation, hyperparameter
tuning, and model evaluation. The CNN model achieved 100% accuracy in the 2-class classification and 85% accuracy
in the 4-class classification, demonstrating its effectiveness in detecting and classifying squamous cell nuclei.

In the study conducted in [29], the authors propose ensemble models of convolutional neural networks to extract
features and subsequently classify the Pap smear images. In this case, they process entire images, which are then
segmented into individual cells for classification. In the method proposed in [30], full images from the CRIC dataset(25]
are used. However, a preprocessing step is applied to crop the images into individual cells using the metadata
provided by the dataset. Subsequently, the classification is performed at the cellular level.

The work proposed by Chandana et al.[21] explores the use of Deep Learning techniques for automated screening
and classification of cervical cancer cells. Utilizing the SIPaKMeD Pap smear image dataset, the proposed method
applies the ResNet-50 architecture to classify cervical cells. The results indicate that ResNet-50 achieved the highest
accuracy of 91.04%, outperforming both Inception-V3 and MobileNet models. Furthermore, the research integrates
Explainable Artificial Intelligence (XAI) techniques, specifically LIME, to enhance the interpretability and
transparency of the diagnostic process, thereby improving the reliability of automated squamous cell nuclei and
cervical cancer detection.

In this study, we propose an MLP model that utilizes local features for squamous cell nuclei localization in Pap
smear images—a critical step in cervical cancer diagnosis. Unlike most state-of-the-art methods, which typically rely
on convolutional neural networks (CNNs) with high computational complexity and are trained on small image
patches, our approach uses a less complex model and processes entire images. These full images, which may contain
avariable number of cells, introduce additional complexity in the task of detecting squamous cell nuclei. We compare
our proposed model with both classical and state-of-the-art classification algorithms using two public datasets:
CRICI25] and SiPakMedl2¢l. Our experimental results demonstrate that the proposed model performs strongly in this
task. The proposal constitutes a key step toward the clinical implementation of cytology automation.

MATERIALS AND METHODS

In this section, the details of the proposal are presented. The datasets used are described, and a comprehensive
explanation of the two variants of the approach is provided. The rationale behind proposing these two variants is
highlighted, along with the advantages of one over the other. Additionally, the inherent complexity of segmenting
this type of imagery is discussed. Furthermore, the metrics employed to evaluate the performance of the models are
outlined. The training and evaluation phases are also detailed, including the methodologies and procedures followed
to ensure robust and reliable results.

Datasets description

The datasets used in this research are enlisted below:

e CRIC dataset comprising 400 images with dimensions of 1376 x 1020 and 150 dpi resolution[25l. CRIC
(Center for Recognition and Inspection of Cells) is a collaborative network of researchers dedicated to
supplying cell collections to the scientific community. Images were acquired using conventional bright-field
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microscopy with a 40x objective and 10x eyepiece, with a Zeiss AxioCam MRc digital camera mounted on a
Zeiss Axiolmager.Z2 microscope. Certified cytopathologists performed manual identification of squamous
cells and classified them in accordance with the Bethesda System nomenclature protocoli3¢l. The
annotations, available in CSV and JSON formats, include the centroid coordinates of each nucleus. This
information allows for the extraction of square patches (90-100 pixels per side) centered on the nuclei.
According to cytopathological expertise, these regions encompass relevant features of both the nucleus and
the adjacent cytoplasm. All images are organized as a collection of Figsharel?5] and are licensed under
Creative Commons Attribution 4.0 International framework. Figure 1 displays two annotated images taken
from the CRIC dataset.

e The SIPaKMeD (Single-cell Images of PAP Smear for Cervical Cancer Detection using KMeans Clustering and
Medical Diagnosis) dataset consists of 4,049 high-resolution images (2048 x 1536 pixels) of individually
annotated squamous cells, manually cropped from 966 clustered cell images obtained from Pap smear
slides, which are also included in the dataset/26l. Image acquisition was carried out using a CCD camera
(Infinity 1, Lumenera) mounted on an OLYMPUS BX53F optical microscope. The dataset adopts a non-
Bethesda classification for squamous cells. In each image, the cytoplasmic and nuclear regions of the
squamous cells are manually outlined by experts. As a result of this procedure the coordinates of each
nucleus and cytoplasm are saved in .dat files.

Both datasets are established benchmarks, comprising color images represented in RGB format. All images from
the datasets encompass a wide variety of squamous cells, alongside other cell types present in the samples, as well
as artifacts. This ensures that experiments are conducted with diverse images, thus avoiding bias in the results with
clean or easily classifiable images. The annotated images from the CRIC and SIPaKMeD datasets assists us in
generating masks to extract the pixels to be used for the training and testing phases.

FIGURE 1. Two images of squamous cells from Pap smear tests, sourced from the CRIC dataset.
Red rectangles highlight the annotated squamous cells, while green rectangles mark artifacts and
other cell types.
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FIGURE 2. Two images of squamous cells from Pap smear tests, sourced from the SIPaKMeD
dataset. Red polygons highlight nuclear and cytoplasmic boundaries using expert-provided
coordinates from the dataset. Green rectangles enclose other cell types and artifacts.

As illustrated in Figures 1 and 2, detecting squamous cell nuclei in whole images poses significant challenges. Figure
1 displays squamous cells enclosed in red rectangles, while Figure 2 shows their nuclei and cytoplasm outlined with
red contours. Both images reveal other cell types and artifacts marked by green rectangles, where some artifacts
closely resemble squamous nuclei in both morphology and color intensity. Furthermore, nuclei from non-squamous
cells exhibit visual similarities that may lead to misclassification.

This complexity suggests that conventional RGB channels alone are insufficient for robust model training. Our
approach addresses this by incorporating local pixel-level features specific to nuclear regions. By enriching the
feature space with other patterns, the model can better distinguish true squamous nuclei from confounding
elements, thereby reducing errors from artifacts or other cell types while maintaining localization sensitivity.

The proposal

The proposal consists of two variants of a Multilayer Perceptron neural network. For the first variant, Figure 3, the
MLP only receives information of R, G and B channels for each pixel. We called this model MLP3. The second variant,
Figure 4, incorporates additional spatial local characteristics into the model. This model is called MLP33.
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FIGURE 3. Flowchart illustrating the MLP3 approach for squamous cell nucleus localization using
RGB-based features. In the image on the right, red-highlighted regions denote the pixels identified
as part of the located nuclei.
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FIGURE 4. Flowchart illustrating the MLP33 approach for squamous cell nucleus localization using RGB
and local features. In the image on the right, red-highlighted regions denote the pixels identified as
part of the located nuclei.

It was observed that the MLP3 adequately classified the pixels in our data set using only their RGB features, see
Figure 3. However, some pixels in the target class were misclassified, which was attributed to factors such as the
density of cells present in the image, cell overlap, and the presence of artifacts, see Figures 1 and 2. Therefore,
leveraging the versatility of the MLP model architecture to introduce complexity, another approach for classifying
pixels that represent squamous cell nuclei is proposed, the MLP33. This approach incorporates RGB features along
with additional spatial local characteristics into the model, including RGB values of neighboring pixels, as well as the
average and standard deviation per RGB channel. The process is described in Figure 4. We consider a neighborhood
of 8 pixels.

Data generation for model training and testing

Thirty images were selected from each dataset, and manual segmentation masks were created to extract target
pixels (see Figure 5). To extract the features for the MLP3 model, which takes only the three RGB values as input,
manually generated masks are used. These masks are created based on data provided by experts for each dataset,
which consists of nucleus location coordinatesi251i2¢]. Using this information, the masks are generated to identify
nucleus pixels in the images, allowing the extraction of their corresponding RGB values, as illustrated in Figure 6.
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FIGURE 5. The image on the left represents an example from CRIC dataset.
The image on the right corresponds to the generated mask.
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FIGURE 6. Selecting RGB features from neighboring pixels of the reference pixel (the inner red square).

To extract the features for the MLP33 model, the RGB values of each pixel labeled as either nucleus or background
were considered, along with the RGB values of its eight nearest neighbors, as illustrated in Figure 6. Starting from a
labeled pixel (highlighted in red in the image), the RGB values of the surrounding pixels were included to form the
training set. In addition, six statistical features were incorporated: the mean and standard deviation for each RGB
channel. This results in a total of 33 features used for training. Table 1 provides a summary of the features used in
the MLP33 model.

The procedure described above resulted in a total of 1,869,023 and 3,927,565 data for the CRIC and SIPaKMeD sets
respectively.

TABLE 1. Total number of features taken for model training.

Pixel Features
Reference pixel R1 G1 Bl
Neighbor 1 R2 G2 B2
Neighbor 2 R3 G3 B3
Neighbor 3 R4 G4 B4
Neighbor 4 R5 G5 B5
Neighbor 5 R6 G6 B6
Neighbor 6 R7 G7 B7
Neighbor 7 R8 G8 B8
Neighbor 8 R9 G9 B9
Means per channel MeanR | Mean G | Mean B
Standard deviation per Std R Std G Std B
channel
Total per channel 11 11 11
Total features 33
The MLP model training

The proposed approach for squamous cell nucleus localization is conducted through pixel classification, labeling
them as 1 (nucleus class) and 0 (background class). The extracted features for each pixel are used for the training
step in correspondence to models MLP3 and MLP33, see Figure 3 and Figure 4.

According to various studieslt0ll13], using 60-80% of the available data for training is considered appropriate to
avoid overfitting. Based on these findings, we split the dataset as follows: 60% for training and 40% for testing.
Additionally, increasing the training proportion beyond 60% resulted in significantly longer training times, ranging
from 3 to 5 days.



10 Alejandro Reyes Morales et al. Multilayer Perceptron for squamous cell nuclei localization in Pap smear tests using local features

During data preparation for the training phase, we selected samples to ensure balanced class representation,
resulting in 934,512 and 934,511 samples for the nucleus and background classes from the CRIC dataset, and
1,963,783 and 1,963,782 samples from the SIPaKMeD dataset.

The MLP3 and MLP33 models were trained for each dataset using the computational resources of the Centro
Nacional de Supercomputo of the Instituto Potosino de Investigacion Cientifica y Tecnolégica, A.C. Four nodes were
employed, each equipped with 192 GB of RAM and 2 processors containing 16 physical cores each. Anaconda with
Keras and TensorFlow 2.5 libraries were used for this purpose. Table 2 summarizes the data split for training,
validation, and testing, along with the model architecture and its corresponding parameters.

TABLE 2. MLP configuration and data distribution for the CRIC and SIPaKMeD dataset.

Parameter Value
Training Data 60 %
Test Data 40 %
Number of Parameters 12,673
Input Dimension 33
Output Dimension 1
Number of Hidden 2
Layers
Nodes per Hidden Layer [128, 64]
L Binary Cross
0SS
entropy
Optimizer Adam
Batch Size 2048
Learning Rate 0.001
Epochs 200

Evaluation metric

To assess the performance of the proposed models, the following metrics were utilized: Accuracy, recall, specificity,
and F1 scorel31132]137], see Table 3.

TABLE 3. Performance metrics for classifier evaluation.

Metric Formula Description
TP + TN Calculates the percentage of accurately
Accuracy classified samples out of the total
TP+TN +FP+FN number of samples.
TP Measures the proportion of actual
Recall _— positive samples that are correctly
TP+ FN identified. Also known as Sensitivity or
True Positive Rate.
TN Calculates the percentage of true
Specificit _— negative samples that are accurately
p y TN +FP recognized. Also referred to as True
Negative Rate.
Precision X Recall
Precision + Recall
Harmonic mean of precision and recall,
F1 Score where: providing a balance between the two
Precision = TP metrics.
recision = o5
Area of Overlap Measures the spatial overlap accuracy
IoU _ between predicted regions and ground
Area of Union truth annotations.
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RESULTS AND DISCUSSION

To enhance the classifier's performance, training was conducted by a cross-validation approach and varying the
parameters of the layers and nodes within the MLP model to increase precision. It was observed that increasing the
number of layers and nodes in the network architecture did not yield a substantial improvement. In fact, in most
cases, precision decreased. Consequently, it was decided to maintain the network architecture with two hidden
layers, one consisting of 128 nodes and the other of 64 nodes. Additionally, the Adam optimizer with a learning rate
of 0.001 was employed. The number of epochs was set to 200, as it was observed that adding more epochs did not
lead to further improvements; instead, the model tended to lose generalizability as you can see in Figure 7 and Figure
8. Table 4 shows the numerical results in the test set achieved by MLP3 and MLP33 variants.
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FIGURE 7. Accuracy plot for the training and validation sets of the CRIC dataset.
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FIGURE 8. Accuracy plot for the training and validation sets of the SIPaKMeD dataset.

TABLE 4. The Accuracy, Recall, Specificity and F1 Scores values for two variants of the proposed model
in the Test set: MLP3 and MLP33.

Dataset Model Accuracy Recall Specificity F1 Score
CRIC MLP33 0.9526 0.9695 0.9372 0.9530
MLP3 0.9255 0.9271 0.9084 0.9271
SIPaKMeD | MLP33 0.9397 0.9614 0.9213 0.9410
MLP3 0.9255 0.9345 0.9082 0.9279
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Based on the experimental results shown in Table 4, we selected the MLP33 model, described in Section “The
Proposal”, which incorporates not only RGB features but also local characteristics, along with channel-wise averages
and standard deviations. It is worth noting that for the two datasets considered, the MLP33 model consistently yields
higher evaluation metrics.

Cross-validation performance during training

To ensure fair benchmarking against our proposed model, we additionally trained classical machine learning
models using the same features. All models were implemented in Python with Keras and Scikit-learn, following
identical data preprocessing steps and the same 60/40 train-test split. We implemented the 5-fold cross-validation
in order to analyze the overfitting of all studied models.

The classical classifiers included in this study, were:
e Support Vector Machine (SVM) with Radial Basis Kernel.
e K-Nearest Neighbors (KNN) with the number of neighbors set to 4.
e Decision Trees using the default configuration provided by Keras.
e Random Forest with 50 trees in the ensemble.
e Bayesian Gaussian Mixture Model (GMM) with 4 Gaussian components in the mixture.

Tables 5 and 6 present the cross-validation results, for the CRIC and SIPaKMeD datasets respectively.

TABLE 5. Cross-validation performance on the CRIC dataset:
mean metrics  standard deviation

Model Mean accuracy on training | Mean Accuracy on validation
MLP33 0.9504 + 0.0015 0.9498 + 0.0014
SVM 0.9318 £ 0.0001 0.9317 £ 0.0005
K Nearest Neighbor 0.9589 + 0.0001 0.9460 + 0.0006
Decision Trees 0.9247 =+ 0.0002 0.9243 £ 0.0003
Random Forest 0.9998 = 0.0000 0.9469 = 0.0007
Bayesian Gaussian mixture 0.8874 +0.0001 0.8872 £ 0.0005

TABLE 6. Cross-validation performance on the SIPaKMeD dataset on train set:
mean metrics * standard deviation

Model Mean accuracy on training | Mean Accuracy on validation
MLP33 0.9316 £ 0.0007 0.9315 + 0.0009
SVM 0.9312 + 0.0005 0.9310 = 0.0004
K Nearest Neighbor 0.9388 +0.0002 0.9388 £ 0.0002

Decision Trees

0.8937 = 0.0002

0.8934 = 0.0002

Random Forest

0.9998 = 0.0000

0.9382 £ 0.0003

Bayesian Gaussian mixture

0.8908 + 0.0039

0.8909 £ 0.0041

As shown in Tables 5 and 6 the training results for the CRIC and SIPaKMeD datasets respectively demonstrate
consistent performance across most classifiers. The low standard deviations across cross-validation folds reflect
consistent metric performance, providing evidence of model stability. For both the CRIC and SIPaKMeD datasets, the
average performance metrics are satisfactory, indicating good generalization and no evidence of overfitting in the



3 REVISTA MEXICANA DE INGENIERIA BIOMEDICA | VOL. 47 | NO. 1 | JANUARY — APRIL 2026

training set.
Final evaluation on test set

Below we compare the MLP33 with other classical methods and state-of-the-art models from the reviewed
literature. No preprocessing was performed prior to training to ensure a fair comparison. Table 7 and Table 8 present
the comparison considering the CRIC and SIPaKMeD datasets, on the test set respectively.

The state-of-the-art results used for comparison were taken directly from the reported findings in the original
research papers, which did not require any additional implementation to replicate these results.

TABLE 7. Performance Comparison of the MLP33 model with classical and
state-of-the-art classifiers on the CRIC dataset.

Model Accuracy Recall Specificity F1 score
MLP33 0.9526 0.9695 0.9372 0.9530
SVM 0.9262 0.9262 0.9033 0.9279
K Nearest Neighbor 0.9464 0.9576 0.9351 0.9471
Decision Trees 0.9158 0.913 0.9185 0.9155
Random Forest 0.9472 0.9698 0.9246 0.9483
Bayesian Gaussian mixture 0.9029 0.9244 0.8814 0.9050
DL-Ensemble, Daniz et. al.[29] 0.9600 0.9600 0.9600 0.9600
Hierarchical Feature-Based, Daniz et. al.[30] 0.9450 0.8348 0.9670 0.8351
Shape-based Features,Terra et. al.[33] 0.9420 0.9510 0.9170 0.9600

TABLE 8. Performance Comparison of the MLP33 model with classical and
state-of-the-art classifiers on the SIPaKMeD dataset.

Model Accuracy Recall Specificity F1 score
MLP33 0.9397 0.9614 0.9213 0.9410
SVM 0.9395 0.9608 0.9321 0.9355
K Nearest Neighbor 0.9392 0.9565 0.9219 0.9401
Decision Trees 0.9003 0.8973 0.9032 0.8999
Random Forest 0.9387 0.9589 0.9185 0.9399
Bayesian Gaussian mixture 0.8215 0.9584 0.6845 0.843
CNN+PCA, GV et. al.34] 0.9637 N/A 0.9983 0.9963

As shown in Tables 7 and 8, the model consistently achieves high recall values (0.9695 for CRIC and 0.9614 for
SIPaKMeD), indicating its effectiveness in identifying the majority of nucleus pixels across different datasets.
Although false positives are present, the F1 scores remain high (0.9530 for CRIC and 0.9410 for SIPaKMeD),
reflecting a favorable balance between sensitivity and precision. In the context of cytology screening, this trade-off
is acceptable—and even desirable—as such applications typically prioritize sensitivity over specificity to minimize
the risk of missing clinically relevant cells.

Although full images are not analyzed in [29], this study is included to highlight the robustness of the proposed
model. It is important to note that, while the reviewed state-of-the-art studies report higher accuracy, they rely on
models that use individual cells, even though these cells are derived from whole images. This distinction directly
impacts the complexity of the problem. Our proposed method, which processes the entire image without the
preprocessing and cropping steps used in [30], demonstrates higher performance. This confirms the relevance of
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our approach for processing full images.

As observed in [34], their model achieves higher accuracy than ours; however, their approach does not process
entire images. Instead, they randomly crop an unspecified area from the original image, which is then resized to
224x224 for processing with the ResNet-34 network[35]. This method excludes a significant portion of the original
image, leaving many cells out of the analysis. Therefore, it does not operate on fully intact images, but rather on
“semi-complete” ones. For the SIPaKMeD dataset, only one state-of-the-art result is mentioned[34], as an exhaustive
search revealed no additional literature utilizing full-slide images. Most studies focus solely on single-cell images
rather than on entire images.

In short, after analyzing the results and comparing them with state-of-the-art findings, it can be determined that
our proposed model, performs comparably to the results reported in the literature. Notably, these studies often
employ more complex and computationally expensive models. Our approach demonstrates that it is possible to
achieve competitive performance without resorting to the increased complexity of those models.

To validate the robustness of our MLP33 architecture, we conducted cross-dataset testing. The model trained on
the CRIC dataset achieved 85.91 % accuracy, recall, and specificity, along with an F1l-score of 86.36 % on the
SIPaKMeD test set (see Table 9), indicating a moderate level of domain transfer. This represents an 8.9% drop in F1-
score compared to its original performance on the CRIC test set (95.26%). In contrast, the model trained on the
SIPaKMeD dataset exhibited stronger generalization to the CRIC test set, attaining 90.69% accuracy, 93.53% recall,
87.69% specificity, and an F1-score 0 90.95% (see Table 10). These findings suggest that the broader morphological
variability within SIPaKMeD enhances the model's ability to learn transferable features, thereby improving cross-
domain performance.

TABLE 9. Cross-dataset performance of CRIC-trained MLP33

Test set Accuracy Recall Specificity F1 Score
CRIC 0.9526 0.9695 0.9372 0.9530
(native)
SIPaKMeD 0.8591 0.8591 0.8591 0.8636

TABLE 10. Cross-dataset performance of SIPaKMeD-trained MLP33

Test set Accuracy Recall Specificity F1 Score
SIPakMeD | 9397 0.9614 0.9213 0.9410
(native)
CRIC 0.9069 0.9353 0.8786 0.9095

Figure 9 depicts the classification results of the MLP33 model. Pixels classified as nucleus are highlighted in red.
Comparing the classifier's results shown in Figure 9(e) and Figure 9(f) with the ground truth masks in Figure 9 (c)
and Figure 9 (d), we can observe certain areas where pixels are incorrectly classified as nucleus (some of these
misclassified areas are enclosed in black squares). These misclassified pixels represent background areas mistakenly
identified as nucleus, however this does not substantially affect the determination of a nucleus region, since the
errors occur at pixel level.
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FIGURE 9. Graphical representation of the proposal: panels (a) and (b) contain images examples from
CRIC, and SIPaKMeD datasets, respectively. Images in the second row, (c) and (d) correspond to the
ground truth of images in the first row. Images in panels (e) and (f) represent the overlaid classification
results onto the images (a) and (b).

It was observed that the proposed model performed well despite the variety and complexity of the data. The model
achieved better performance on the CRIC dataset. It had more difficulty classifying nucleus pixels in the SIPaKMeD
dataset due to the larger variety of images and characteristics, see Figure 9(f) and Figure 9(e).

Figure 10 presents additional visual results of the MLP33 model on two images: one from the CRIC dataset and
another from the SIPaKMeD dataset.
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FIGURE 10. Graphical representation of the proposal: panels (a) and (b) contain images examples from
CRIC, and SIPaKMeD datasets, respectively. Images in the second row, (c) and (d) correspond to the
ground truth of images in the first row. Images in panels (e) and (f) represent the overlaid
classification results onto the images (a) and (b).

To further evaluate the performance of our proposal, we employ the Intersection over Union (IoU) metric. Thirty
images from the CRIC and SIPaKMeD datasets were analyzed using the MLP33 model. The Intersection over Union
(IoU) metric was computed, resulting in average loU scores of 0.5214 for CRIC and 0.4622 for SIPaKMeD. These
results are presented in Table 11.

TABLE 11. Assessment of MLP33 Performance Using loU on the CRIC and SIPaKMeD datasets.

Metric CRIC Dataset | SIPaKMeD Dataset
Min IoU 0.3415 0.3187

Max IoU 0.8909 0.6142

Mean IoU 0.5214 0.4622

Std Dev +0.1436 +0.0896

The results indicate that our approach does not precisely capture the morphology of nuclei, as it performs semantic
segmentation rather than object-level segmentation. This distinction is clarified below:

e The MLP model was designed for nuclei localization rather than fine-grained segmentation. Its primary goal
is to identify regions containing nuclei (to enable subsequent bounding box extraction; see the Results
section), without aiming for pixel-perfect boundaries. This design rationale supports our use of pixel-wise
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classification metrics—Accuracy, Recall, Specificity, and F1-score—instead of region-based metrics such as
Intersection over Union (IoU).

e (lassification errors made by the MLP can introduce segmentation artifacts that are penalized by the IoU
metric. Nevertheless, the model effectively enables nuclei detection, even when boundary delineation is
imperfect. While IoU emphasizes contour precision, our workflow focuses on determining the presence or
absence of nuclei, which aligns with the intended purpose of our model.

Figure 11 provides a visual illustration of these points.

0.3899 ground truth

FIGURE 11. Left panel: MLP33 model predictions evaluated using the loU metric. Misclassified artifacts
and regions are marked with green bounding boxes, and segmentation errors are indicated with black
bounding boxes. Right panel: corresponding ground truth masks.

The examples in the Figure 11 illustrate that, while the full extent of each nucleus may not be captured, the model
successfully identifies their presence or absence. Red areas denote the classifier’s results. Green bounding boxes
mark misclassified artifacts and regions, whereas black bounding boxes indicate nuclei with segmentation errors
either over-segmentation (excessive area) or under-segmentation (incomplete coverage).

The proposed model demonstrates a more efficient classification of nucleus pixels compared to the other models.
Figure 12 illustrates that the proposed model outperforms others in classifying nucleus pixels. The prediction in
Figure 12(c) shows the best alignment with the ground truth mask in Figure 12(b). Although some small background
areas are misclassified, the segmentation of the nuclei is more consistent with the ground truth mask. This becomes
even more evident when comparing the ground truth mask with the results of the other classifiers. For example, a
preliminary inspection reveals that both the Support Vector Machine and the Bayesian classifier incorrectly labeled
a substantial portion of the background as nucleus regions. Furthermore, upon closer inspection of the other models,
small artifacts found in the background are classified as part of the nuclei, demonstrating the generalization
capability of our proposed model in pixel classification tasks, considering local features.
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FIGURE 12. A graphical comparison of our model with other classification models. (a) Image example
from CRIC dataset, (b) the ground truth image, classification results of (c) our model, (d) SVM, (e) K-
nearest neighbors, (f) Random Forest, (g) Decision tree, and (h) Bayes classifier.

After detecting the nuclei, the subsequent stage of our research involves postprocessing and connected component
analysis. In alignment with practices used by cytopathologists in the CRIC dataset, we intend to extract square
patches (90-100 pixels per side) centered on the centroid of each detected nucleus. This will enable the model to
capture both nuclear and cytoplasmic features, supporting more comprehensive automated analysis of Pap smear

images.
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CONCLUSIONS AND FUTURE WORK

In this work was proposed an Artificial Neural Network model based on the Multilayer Perceptron, for the
classification of pixels belonging to the nucleus of squamous cells. RGB characteristics were considered, and
additionally, local characteristics were added, which include: RGB components of their 8 nearest neighbors, channel-
wise averages and standard deviations. Furthermore, two public datasets were considered. The proposed model
achieved an accuracy, recall, specificity, and F1 score of 0.9526, 0.9695, 0.9372, and 0.9530, respectively, on the CRIC
dataset; and 0.9397,0.9614, 0.9213, and 0.9410 on the SIPaKMeD dataset.

Our approach enables automatic pixel-wise localization of squamous cell nuclei directly on full Pap smear images,
without the need for manual cell isolation or cropping. The proposed model advances the development of clinically
viable automated screening solutions.

It was confirmed that classical supervised learning models remain useful in complex tasks like the one addressed
by this proposed model. We observed that the performance metrics surpass those of the reviewed literature using
more complex and resource-intensive models. Therefore, it is important to continue considering these classical
models when performing complex classification tasks, such as segmenting nuclei of squamous cells to automate
cervical cancer diagnoses.

As future work, alternative approaches are proposed to enhance the performance in the classification of squamous
cell nuclei. Additionally, possible improvements can be achieved by postprocessing, connected component analysis
and bounding box extraction on the obtained results. On the other hand, the use of convolutional neural networks,
particularly U-Net architectures, it is suggested to perform nucleus segmentation. Subsequently, other models will
be applied to characterize whether cells are normal or abnormal based on the segmentation results, aiming to
automatically detect malignant cells within Pap smear medical tests.
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