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ABSTRACT
This work presents a methodology for obtaining the harmonic estimation of biomedical signals such as 
electrocardiogram, cardiorespiratory and blood pressure signals. The proposed methodology is achieved using 
polynomial approximation and the Kalman filter. As advantage, the technique includes instant estimations of signal 
harmonics and its derivatives using a real-valued model. Furthermore, a comparison of the results is conducted with 
the Savitzky-Gola, nonlinear tracking differentiator methods, extended state observer and digital differentiator base 
on Taylor series. The results suggest that the proposed method has the potential to enhance the quality of signal 
measurements, especially in the presence of noise. 
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RESUMEN
Este trabajo presenta una metodología para obtener la estimación armónica de señales biomédicas como señales 
de electrocardiograma, cardiorrespiratorias y de presión arterial. La metodología propuesta utiliza la aproximación 
polinomial y el filtro de Kalman. Como ventaja, la técnica incluye estimaciones instantáneas de las armónicas de la 
señal y sus derivadas utilizando un modelo con parámetros en los reales. Además, se realiza una comparación de 
los resultados con los métodos de Savitzky-Golay, el diferenciador de seguimiento no lineal, observador de estados 
extendido y diferenciador digital basado en series de Taylor. Los resultados sugieren que el método propuesto tiene 
el potencial de mejorar la calidad de las mediciones de señales, especialmente en presencia de ruido.

PALABRAS CLAVE: análisis de señales biomédicas, estimación armónica en señales biomédicas, estimación de derivadas 
en señales biomédicas
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Signal analysis is essential in many engineering fields, including power systems, vibration analysis, voice 
recognition, radar applications, biomedical engineering, and digital communications. Because it allows 
obtaining relevant features regarding system information. The human body has different systems, such as 
the cardiovascular, nervous, and respiratory system, among others[1]. From these systems, signals can be 
obtained that provide relevant information. These signals are processed for analysis[2][3], which leads to their 
quantization, causing quantization error. These signals can not only be affected by quantization error but 
also by other errors caused by measurement instrument components or incorrect usage. One solution to this 
issue is the implementation of a methodology that considers noise filtering and achieves instantaneous esti-
mates without the need for a sample window for estimation.

The measurement of biomedical signals is a cornerstone of modern healthcare, providing critical insights 
into physiological processes and aiding in the diagnosis and treatment of various medical conditions. 
Common examples of biomedical signals are electrocardiograms (ECG), electroencephalograms (EEG), and 
blood pressure measurements. These signals are crucial for monitoring patient health, conducting medical 
research, and developing new medical technologies. The precision and capabilities of biomedical signal mea-
surement depend on sensors and signal processing techniques. Digital Signal Processing (DSP) techniques 
enable the extraction of meaningful information from noisy signals, improving diagnostic accuracy[4]. 
Therefore, the rates of change in biomedical signals are part of their analysis.

Below are some methodologies that can be implemented in signal estimation, which can also estimate the 
rate of change in the signal. The Savitzky-Golay (Sgolay) method includes the use of data windows[5][6], intro-
ducing a delay in its estimates. In[7][8], the discrete wavelet transform is implemented to cancel disturbances 
in ECG caused by devices or movements. However, even when the sample window size can be narrow 
depending on the signal resolution to be estimated, a sample window is still necessary for information esti-
mation. On the other hand, the Nonlinear Tracking Differentiator (NTD) method[9][10] requires an adjustment 
parameter, which consequently implies a drawback since this parameter needs to be calibrated with respect 
to the signal to be estimated, leading to potentially suboptimal or highly suboptimal estimates. In response 
to these limitations and based on the results obtained from the methodology used in[11][12] for phasor estima-
tion, it was proposed to employ a methodology that enables instant estimations. This methodology is 
grounded in the implementation of a signal model that includes its respective derivatives, all within a state 
transition matrix. With a zeroth-order model (approximating the signal with a zeroth-order Taylor polyno-
mial), estimations of the electrocardiogram are obtained. By increasing the order of the Taylor polynomial, 
the model is modified, allowing for the estimation of signal derivatives, achieving a better response in esti-
mation for signals corrupted by noise. This methodology surpasses the limitations of other strategies in the 
sense that there is no need for a sample window to perform estimations and enables a more accurate signal 
approximation by reducing noise. Consequently, the proposed method focuses on obtaining a more precise 
and comprehensive estimation in relation to the characteristics of biomedical signals. It successfully pro-
vides good estimates for signals such as electrocardiograms, cardiorespiratory signals, and blood pressure. 
Another method that can be implemented in the analysis of biomedical signals is the Extended State Observer 
(ESO), proposed for the cascade of integrator systems without measurement noise[13][14].

INTRODUCTION



Johnny Rodríguez-Maldonado et al. A Real-Valued Kalman Estimation Method for Harmonic Signal Analysis in Biomedical Applications 9

In the monitoring of ECG, it is common to use modulation techniques for transmission and reception. Some 
techniques have been developed; for example, in[15], a real-time algorithm for ECG-Derived Respiration is 
presented. In[16], an adaptive algorithm using different modulation schemes is introduced. In[17], a method for 
ECG monitoring is proposed that utilizes a transmitter-receiver system with modulation frequencies to send 
and receive ECG information.

Achieving a better representation of an ECG signal is another objective. For instance, in [18], a method to obtain 
a better representation of blood flow signals was proposed. In[19], a novel ECG enhancement algorithm based on 
sparse derivatives is introduced. In[20], the ECG is viewed as a quasi-periodic process and employs the unbiased 
finite impulse response (UFIR) smoother on optimal horizons, applied to a harmonic ECG model with good 
results. In[21], a new tracking differentiator is proposed, which can synchronously filter noise and estimate the 
derivative of the input signal. The proposed method, based on the analysis of the rate of changes in some bio-
medical signals such as ECG and blood pressure, involves the development of a model using a passband signal 
and its derivatives. By approximating the signal and its derivatives with Taylor polynomials, it is possible to 
develop a state transition to implement in the Kalman filter. Since the proposed method uses Taylor polynomi-
als, the methodology is compared with a Digital Differentiator based on Taylor Series (DDTS)[21].

The aim of this work is to present a method to estimate the derivative signal of an ECG. With the derivative, 
it is possible to detect high frequencies in the ECG, which are common in coronary heart disease and useful 
for electrocardiographic diagnosis. In[22], the derivative of an ECG is obtained using an electronic circuit and 
operational amplifier. However, in this document, the derivative is obtained mathematically, and the algori-
thm can be implemented in any microcontroller, DSP, FPGA, or PC. Additionally, the numerical results can be 
obtained in real time, and the method only needs one sample to achieve the estimate of both the signal and 
its derivative.

MATERIALS AND METHODS

Commonly, biological systems produce quasi-periodical signals. These signals are almost periodical signals, but 
with fluctuations between periods. Next, the model shown in[12][23] for a quasiperiodic signal oscillation is 
presented.

We start using a periodical signal sp(t), a fundamental approach involves to represent a periodic signal by its 
Fourier representation in Equation 1:

sp(t) =        che jhω1t,                                                                                          (1)

where ω1 represents the fundamental frequency in radians per second, H is the number of harmonics considered, 
and ch represents the Fourier coefficient related to the h-th harmonic.

If (1) is relaxed to allow slow variations (compared with ω1) in ch in both amplitude and phase, then the expression

ch(t) = ah(t)ejφh(t),                                                                                          (2)

∑
H

h = -H
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can be used to model the fluctuation through the behavior of each coefficient, where ah(t) and φh(t) now represent 
the amplitude and phase variation for each harmonic. Under the assumption (Equation 2), the quasi-periodic 
version of sp(t) is given by

s(t) =        ch(t)e jhω1t,                                                                                       (3)

where for a real-valued signal (Equation 3), the components should meet ch(t) = c-h(t) for h ≠ 0, with ch(t) representing the 
complex conjugate of ch(t). This relaxed model offers more flexibility as it allows the description of the time-varying 
dynamic evolution of each harmonic. The Taylor series at t0 can be used to represent each passband signal (Equation 4) by:

ch(t) =       ch
   (t0)                εh

       (t),                                                                         (4)

with ch
   (t0) =                     representing the k-th derivative of the h-th harmonic at t = t0, and εh

        (t) representing 
the residue due to higher-order terms.

Using (Equation 4) in (Equation 3), the following ex–pressing is obtained for the quasi-periodical signal (Equation 5):

s(t) =         rh(t) + E(t),                                                                                     (5)

where

rh(t) =                    (t - t0)k e jhω1t,                                                                           (6)

represents the h-th rotated phasor, and Ε(t) represents the summation over of the residues Ε(t) = ∑h=-H εh
       (t).

The relation (Equation 6) can be used to construct a transition function for the rotated phasor from time t0 to 
time t. We construct it by analyzing (Equation 6) per each value of h. We separate two cases, h = 0 and h ≠ 0.

First, for h = 0, the DC component r0 = c0 at instant t can be related to t0 by performing the derivation of (Equation 
6) (K - 1) times (Equation 7):

r0(t) = Ψ(t - t0)r0(t0),                                                                                     (7)

where the i-th element o the vector r0(t) ∈ ℝ(K + 1) is given by the i-th derivative of the DC component c0
  (t) for i = 1, 

… , n; and the i-th element of the j-th column of the matrix Ψ(t - t0) ∈ ℝ(K + 1)×(K + 1) is given by (Equation 8):

ψi,j(t) =                                                                                                                           (8)

In a similar manner, for h ≠ 0 the k-th harmonic component h at instant t can be related to t0 by performing the 
derivation of (6) (K - 1) times, where now, due to the complex exponential function, we have (Equation 9):

∑
H

h = -H

∑
K

k = 0

(k+1)(k) (t - t0)k

k!

(k) dkcht0

dtk t = t0

(k+1)

∑
H

h = -H

ch
   (t0)
k!

(k)

∑
K

k = 0

H (k+1)

(i)

(t - t0)(j - i)

(j - i)!

0,                              i > j,

,                    i ≤ j.{
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rh(t) = M(hω)Ψ(t - t0)M-1(hω)e jhω1trh(t0).                                                               (9)

In this context, the i-th element of rh(t) ∈ ℂ(K+1), in (9) represents the i-th derivative of rh  (t) and M(hω) ∈ ℂ(K + 1)×(K + 1) 
is a lower triangular complex matrix with elements given by (Equation 10):

mr,c =                                                                                                                                        (10)

A discrete representation of (Equation 10) can be obtained sampling s(t) with a uniform sampling time T, and 
using t0 = nT and t = (n + 1)T, it is possible to use the relations in (Equation 9) to relate the rotated phasor from 
sample to sample. From (Equation 9), with t0 = nT and t = (n + 1)T we have (Equation 11):

rh(n + 1) = Φh(n + 1, n)rh(n),                  h = -H, ..., H                                                  (11)

where Φh(n + 1, n) = M(hθ)Ψ(T)M-1(hθ)e jnhθ1 works as a transition matrix from time nT to (n + 1)T, and θ1 
represents the discrete fundamental frequency in radians.

Using (Equation 11) to represent each component in (Equation 5), a model for the signal s(n) can be constructed 
as follows (Equation 12):

                                                                      (12)

(i)

0,                                                             r < c,
1,                                                             r = c,

,                  r > c.(r - 1)!
(c - 1)!(r - c)!

(jhω)(r - c){

x(n + 1) = Ax(n),
s(n) = Cx(n) + E(n),

where x ∈ ℂ(2H + 1)(K + 1) represents a vector formed from the union of the 2H + 1 vectors rh, the components are  
ordered as follows x = [r0     r1     r-1     r2     r-2     ...     rH     r-H]'; thereby following (11) the matrix A ∈ ℂ(2H + 1)(K + 1)×(2H + 1)(K + 1) 
is a block diagonal matrix given by (Equation 13):

Φ0      0       0       ...        0       0
  0      Φ1      0       ...        0       0
 0        0     Φ-1   ...       0       0
   ⋮          ⋮          ⋮         ⋱         ⋮          ⋮

   0        0        0        ...      ΦH     0
      0        0        0        ...       0     Φ-H

and C ∈ ℝ(2H + 1)(K + 1) represents the synthesis of the signal from its harmonic components, according to 
(Equation 5) C is given by the union of (2H + 1) blocks ξ ∈ ℝK + 1, where ξ = [1     0     ...     0].

Only for h = 0 the corresponding elements in A and x are real-valued. However, a real-valued version of 
(Equation 12) can be obtained using ch(t) = c-h(t) for h ≠ 0. We use the following linear transformation x = Px 
where x ∈ ℝ(2H + 1)(K + 1) (Equation 14):

A =                                                                                                         (13)[ ],

~
~
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    I        0         0       ...         0       0
   0         I           I        ...         0       0
   0     

1
2-j I          I      ...         0       0

   ⋮          ⋮          ⋮          ⋱          ⋮         ⋮
   0        0        0        ...         I           I
    0        0        0        ...         I           I

Using the lineal transformation (Equation 14), a real-valued representation of (Equation 12) is (Equation 15):

                                                                      (15)

where A = PAP-1 and C = CP-1 are real-valued matrices and x = [r0 Re(r1) jIm(r1) ... Re(rh) jIm(rh)].

Application of the Kalman Filter and Coefficient Estimation
The standard discrete Kalman filter[24][25] can be applied to obtain the estimate of the harmonic components using 

the model (Equation 12). The Kalman filter implementation is shown in Algorithm 1. After the filtering process. The 
amplitudes and phases of each component ch(t), as well as its derivatives, can be derived from the estimates of x.

 =                                                                                                      (14)

1
2

1
2

1
2j

1
2

1
2

1
2-j 1

2j

[ ]r0
Re(r1)
jIm(r1)

⋮
Re(rh)
jIm(rh)

[ ] r0
r1
r-1
⋮

rH
r-H

[ ],

x(n + 1) = Ax(n),
s(n) = Cx(n) + E(n),

~ ~~
~

~ ~ ~

~

ALGORITHM 1. Pseudocode of the Kalman Filter

1: procedure
2: Initialize parameters.
3: for each sample n
4: Predict state:

5: Predict covariance:

6: Update Kalman gain:

7: Update state.

8: Update covariance.

9: end for
10: end procedure

x -(n) = Ax -(n - 1)~ ~~

P-(n) = AP(n - 1)A'~

K(n) = P-(n)C'(CP-(n)C' + σe )-12~ ~ ~

x(n) = x-(n) + K(n) (s(n) - Cx-(n))~ ~ ~~

P(n) = (I - K(n))CP-(n)~

RESULTS AND DISCUSSION

In this section, the estimates of the TKA filter are illustrated and compared with the Sgolay, NTD, ESO, 
and DDTS methods. The test signals are ECG, RAW (data corresponding to heart R-wave to R-wave 
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intervals), and blood pressure. As the first test signal, a synthetic ECG is developed with mathematical 
functions to obtain its derivative, using the set of derivatives of each of its functions. Hence, the 
estimation error in the signal and its derivative can be obtained. However, since the derivative in the 
measurement signals is not known, the error is only calculated with respect to the measurement 
signal.

Performance Results of the TKA Filter
The performance of the algorithm is showcased in this section, utilizing a polynomial approximation 

of K = 2 and H = 64 harmonics as detailed in Equation 4. In what follow we evaluate the capacity to 
reconstruct the input signal after applying the analysis and synthesis stages for the proposed real-
valued TKA (Taylor-Kalman Algorithm). For the TKA, the analysis stage includes the state estimation 
using the Kalman algorithm, and then the synthesis stage computes a reconstruction of the input signal 
from the filter estimates. We also evaluate the performance of the TKA as a derivative are also computed. 
The proposed TKA Filter was implemented on a computer with Matlab 2016b, Intel Core i5 @ 2.6 GHz, 
8.00 GB RAM, and operative system Mojave for MacOS is used.

As the PhysioNet signals[26] have not information about the derivative of the measurement signal. There 
is a problem when the performance of the derivative estimation is evaluated. To solve this situation, a 
math model of ECG is used to create synthetic ECG signals with known derivatives, obtained with each 
function of (Equation 16). The used model was proposed in[27], the synthetic ECG signal is defined as 
follows (Equation 16):

f0(t) = 0,                                                                    0 ≤ t ≤ 200                                                                                          (16.a)

f1(t) = a -       (    (t - (200 +      )))2
,                   200 ≤ t ≤ 200 + b                                                                             (16.b)

f2(t) = 0,                                                                   200 + b ≤ t ≤ 440                                                                             (16.c)

f3(t) = [         g + 1]c[                   ] ,                    440 ≤ t ≤ 440 +                                                                                (16.d)

f4(t) = [         g + 1]c[                          ] ,            440 +     ≤ t ≤ 440 + 3                                                                   (16.e)

f5(t) = [         g + 1]c[                          ] ,            440 + 3   ≤ t ≤ 440 + 6                                                                  (16.f)

f6(t) = [         g + 1]c[                   ] ,                    440 + 6    ≤ t ≤ 440 + d                                                                 (16.g)

f7(t) = 0,                                                                   440 + d ≤ t ≤ 440 + d + 680                                                      (16.h)

f8(t) = a -       (    (t - (680 +      )))2
,                   440 + d ≤ t ≤ 440 + d + f.                                                             (16.i)

The range for each one of the variables a ⋯ g used in the definition of the synthetic ECG is show 
in the Table 1.

a
100
15

8
b

b
2

140-d
100

-1.1*0.3(t-440)
20

d
7

140-d
100

d
7

d
7

140-d
100

d
7

d
7

140-d
100

-1.1*0.5(t+440)
20

-1.1*0.6(t-[400+1.5   ])
20

d
7

-1.1*0.5(t-[400 + 5   ])
20

d
7

d
7

e
100
15

80
f

f
2
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In Figure 1. The signal estimates are illustrated in top of the graph, while the derivative estimates are illustrated in bottom of 
the graph, the parameters used to generate the synthetic signal for this example are a = 0.1, b = 160, c = 0.096, d = 120, e = 0.2, 
f= 300, g = 50.

Variable Function in synthetic ECG signal Physiological interval

a Amplitude of P wave 0-0.3 mV

b Length of P wave 0-160 ms

c Amplitude of the QRS complex 0-0.5 mV

d Length or QRS complex 50-120 ms

e Amplitude of T wave 0-0.8 mV

f Length of T wave 0-300 ms

g Amplitude of the QRS complex 0-50 mV

FIGURE 1. Synthetic ECG signal and derivative estimates with Sgolay, NTD, ESO, DDTS, and TKA.

TABLE 1. Parameters of the synthetic ECG signal.

The input signal, as well as the estimates from the four algorithms, are displayed in Figure 1, (the measurement is illustrated 
in left top graph, and the error estimate in the right top graph). Furthermore, a zoomed-in view is offered to facilitate a closer 
examination of the estimation details. As it can be seen, the Sgolay estimation smooths (filters out high-frequency signals), 
which can lead to estimation errors in some cases or segments of the signal. On the other hand, NTD estimation provides errors 
in sections with abrupt changes in amplitude. And the ESO estimates have a similar behavior to the NTD but with greater 
amplitude. It can be observed that signal estimates provided by the proposed TKA method have the best performance. In 
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Figure 1, left of bottom graph, the estimation of the derivative of the signal is shown, which corresponds to the same zoomed-in 
section of the signal. Similarly, in the derivative estimation, the Sgolay method tends to smooth the signal, NTD method 
provides a significant number of errors when the signal exhibits rapid changes in amplitude. It is important to remark that no 
additional differentiator algorithms are needed to compute the estimation of the derivative when the proposed Kalman 
algorithm is used. Also, the error in derivative estimation is shown in the bottom right graph in Figure 1. When an abrupt 
change in the signal occurs, the estimations have considerable errors, with better estimates obtained using the ESO and DDTS 
methods. However, the measurement signals are smoother than the synthetic signal.

Signal under estimation is an Electrocardiogram (ECG) signal sourced from the PhysioNet database[26], (Signals recorded in 
labor, between 38 and 41 weeks of gestation; four signals acquired from maternal abdomen; direct electrocardiogram recorded 
simultaneously from fetal head; positioning of electrodes was constant during all recordings; Ag-AgCl electrodes (3M Red Dot 
2271) and abrasive material to improve skin conductance (3M Red Dot Trace Prep 2236); bandwidth: 1Hz - 150Hz (synchronous 
sampling of all signals); additional digital filtering for removal of power-line interference (50Hz) and baseline drift, Sampling 
rate: 1 kHz; resolution: 16 bits; input ranges are included in the records in EDF format). On the other hand, the results are 
depicted in Figure 2, where the estimation is compared with the Sgolay, NTD, ESO and TKA, The DDTS cannot estimate the 
signal; it can only estimate the derivative of the signal. As can be seen in the zoomed area, better estimates of the signal are 
obtained with TKA. The Sgolay filter smooths the changes, while NTD and ESO provide similar estimates. However, the ESO 
method yields larger estimates in amplitude. The derivative estimate is shown in the graph in Figure 2. Unlike the synthetic 
signal, DDTS provided the worst case in the estimates and is illustrated in yellow to distinguish it from the other signal 
estimates. The derivative estimates with TKA improve, with regard to the synthetic signal due to the smooth changes in the 
amplitude of the derivative.

FIGURE 2. a) Signal reconstruction with the Sgolay, NTD, ESO and TKA methods. And Zoomed-in view of the reconstructed 
(estimated) signal. In b) the derivative estimates are illustrated and zoomed-in view of the derivative estimation of the signal.
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As a third example, a cardiorespiratory signal RAW (data corresponding to heart R-wave to R-wave intervals). Data 
correspond to heart R-wave to R-wave intervals, Oxygen consumption, and mechanical power output on a beat-to-
beat basis recorded all along the graded exercise test sessions. Participants are 18 teenagers athletes (15.2±2 years) 
from the Regional Physical and Sports Education Centre (CREPS) of French West Indies (Guadeloupe, France)[26]. 
The results obtained using the Sgolay, NTD, ESO and TKA methods illustrated in Figure 3.a). In figure, a zoomed-in 
view of the signal is shown. Similarly to Figure 2, the estimates for rapid changes in the signal are deficient with 
the Sgolay and NTD methods. The DDTS method produced large errors when the signal had abrupt changes. In 
Figure 2 b), a close-up of the derivative estimation is presented, and the results show a behavior very similar to the 
derivative signal estimates in the electrocardiogram.

FIGURE 3. a) Signal reconstruction using the Sgolay, NTD, ESO and TKA methods. b) Zoomed-in view of the estimation. c) 
Estimation of the derivative of the estimated signal and include the derivative estimation with DDTS.

In Table 2, the RMSE error (17) estimates in signal and derivative estimate are show, as can be seen, TKA provided 
the better signal reconstruction. The best derivative estimates of the synthetic signal were obtained by NTD, the 
estimates in TKA are degraded by the transients, however they are closer to the NTD estimates and can be obtained 
without an additional derivative stage. The derivative of the synthetic signal is provided by the derivative of each 
function (f0(t), f1(t), … , f8(t)). However, since the measurement signal does not provide a known derivative, the 
error is not calculated. To obtain the derivative of the measurement signal, it would need to be processed by 
another method. Hence, in Table 2, only the error of the signal is calculated.
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Signal
RMSE

METHOD
Sgolay NTD ESO DDTS TKA

Sy
nt

he
tic Signal 0.0059 0.0311 0.0102 Not applicable 7.2722×10-5

Derivative 0.1821 0.006 0.0059 0.0061 0.0089

EC
G Signal 12.0219 12.9263 13.7664 Not applicable 7.7915×10-5

RA
W Signal 4.4964 5.6750 7.4522 Not applicable 1.1348×10-5

Bl
oo

d

Signal 1.5211×10-4 0.2916 0.0577 Not applicable 4.1782×10-15

RA
W

 2

Signal 0.0475 0.0525 0.0656 Not applicable 1.4625×10-15

TABLE 2. RMSE in signal and derivative estimates.

As a reference for the accuracy of the estimations, the root mean square error (RMSE) is calculated, 
which is defined as (Equation 17):

RMSE =                                                                                                              (17)

where s(n) represents the input signal and the signal estimation is defined as s(t) and N is the ample 
size.

CONCLUSIONS

The objective of this work is to verify the efficiency of TKA for the estimation of biomedical signals; 
three types of biomedical signals (ECG, synthetic ECG, cardiorespiratory and blood pressure) were 
analyzed. The capacity for signal reconstruction and derivative estimation were compared with the 
Sgolay, NTD, ESO and DDTS methods. Also, the estimation of the input signal is not obtained by the 
DDTS method, because it can only estimate the derivative of the signal. The results obtained for signal 
estimation show an advantage over the Sgolay, NTD and ESO methods, as well as a superiority in the 
estimation of its first derivative compared to the ESO method. On the other hand, note that the 
estimation is with respect to the synthetic derivative of the ECG signal, which has large discontinuities. 
Hence, in measurement signals that are smoother, it could be expected that the estimates in the 
derivative would have more precision. Looking ahead, to enhance the generalizability of our findings, 
we plan to extend our testing to include a wider array of real physiological signals like EMG and EEG.

√∑(s(n) - s(t))2

N
̂

̂
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