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ABSTRACT  
This study aimed to create a genetic information processing technique for the problem of multiple alignment of genetic 
sequences in bioinformatics. The objective was to take advantage of the computer hardware's capabilities and analyze 
the results obtained regarding quality, processing time, and the number of evaluated functions. The methodology 
was based on developing a genetic algorithm in Java, which resulted in four different versions:  Gp1,Gp2,Gp3,and 
Gp4. A set of genetic sequences were processed, and the results were evaluated by analyzing numerical behavior 
profiles. The research found that algorithms that maintained diversity in the population produced better quality 
solutions, and parallel processing reduced processing time. It was observed that the time required to perform the 
process decreased, according to the generated performance profile. The study concluded that conventional computer 
equipment can produce excellent results when processing genetic information if algorithms are optimized to exploit 
hardware resources. The computational effort of the hardware used is directly related to the number of evaluated 
functions. Additionally, the comparison method based on the determination of the performance profile is highlighted 
as a strategy for comparing the algorithm results in different metrics of interest, which can guide the development of 
more efficient genetic information processing techniques.
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RESUMEN 
El objetivo del presente trabajo es desarrollar una estrategia de procesamiento de información genética para 
el problema del alineamiento múltiple de secuencias en el área de bioinformática con el propósito de explotar la 
potencia del hardware y analizar los resultados en términos de calidad de las soluciones obtenidas, así como el 
tiempo requerido por el sistema de cómputo para realizar el proceso y la determinación del número de funciones 
evaluadas. Los procedimientos y metodología para dicho trabajo fueron basados en la programación de un Algoritmo 
Genético en lenguaje Java, del que sucesivamente se obtuvieron cuatro diferentes versiones denominadas Gp1, Gp2, 
Gp3 y Gp4. Con esto se procesó un conjunto de secuencias genéticas y se evaluaron los resultados a través de la 
determinación de los perfiles de comportamiento numérico.  Entre los hallazgos se encuentra que la diversidad en 
la población y el procesamiento paralelo tienen influencia en los resultados. A partir del perfil de comportamiento 
numérico se observa una reducción en el tiempo requerido para realizar el proceso. Se concluye que a) el equipo de 
cómputo convencional puede generar muy buenos resultados al procesar información genética cuando los algoritmos 
son preparados para aprovechar al máximo los recursos de hardware. Esto puede guiar al desarrollo de estrategias 
más eficientes de procesamiento de información genética. 

PALABRAS CLAVE: bioinformática, algoritmo genético, alineamiento múltiple de secuencias, msa
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INTRODUCTION
Deoxyribonucleic acid, commonly known as DNA, is a large and complex molecule located in the nucleus of cells 

in all living organisms. It takes the shape of a double helix structure, where the genetic information unique to each 
individual and species is stored. All life is based on a code written in DNA molecule, the common denominator 
among living beings [1]. DNA can exist in a single-stranded form or as higher-order structures, including the canoni-
cal double helix and noncanonical duplex, triplex, and quadruplex species [2]. In a DNA molecule, each sugar in the 
two strands is attached to one of four nitrogenous bases - Adenine (A), Guanine (G), Cytosine (C), and Thymine (T). 
These bases can bond through hydrogen bonds, and their bonding possibilities differ. Specifically, DNA's double 
helix structure is attributed to hydrogen bonds between A-T (two) and C-G (three) base pairs[3]. 

The number of hydrogen bonds determines the specific pairing between nitrogenous bases, but this structure is 
prone to errors and can sometimes be repaired [4][5].

According to the NCBI database [6], the number of records has doubled approximately every 18 months since 
1982[7]. From a computer science perspective, advanced metaheuristic strategies are required to handle such infor-
mation[8][9].

We developed a genetic algorithm to perform multiple genetic sequence alignments in this work. The objective is 
to explore the improvement from different parametrization schemas (Gp1, Gp2, Gp3, and Gp4) for the algorithm`s 
performance in terms of a) the solution quality (fitness) achieved by the algorithm and b) the computational effort 
(NF̂ E) with the count of evaluated functions. Since the parameter adjustment is made in the number of processing 
cores and mutation level, the secondary objective is to describe the impact of such adjustments on the processing 
time between the four algorithm schemas. 

In the field of genetics, the parallelization strategy of processing information has shown significant improvement 
in the results, especially in reducing the computational time required to solve various problems[10][11][12]. As a valida-
tion method, the numerical performance profile measures the relative efficiency of the algorithm in solving the set 
of problems[13].

Bioinformatics software testing is often complex due to the difficulty in verifying the correctness of output and 
effectively generating failure-revealing test cases[14]. In this work, we developed four strategies based on a genetic 
algorithm for the multiple sequence alignment problem and compared their performance to each other. Multiple 
sequence alignment (MSA) is essential in bioinformatics, aiding in phylogenetic, protein, and genomic analysis, but 
faces challenges in increasing alignment accuracy[15].

There are several algorithm strategies in the state of the art, such as the "Progressive alignment," which has been 
one of the most used methods since the 1980s [16]. In addition to improvements in algorithm design, modern hard-
ware technology has increased processing speed and enabled more simultaneous alignment sequences[17]. 
Furthermore, integrations based on framework processing like Apache Spark can produce promising results and 
new perspectives [18].

Regarding the processing algorithms, researchers have developed exact, progressive, and iterative algorithms to 
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address the Multiple Sequence Alignment (MSA) problem. Exact algorithms exhaustively search in the space of 
solutions and calculate the global optimum in sequences of relatively small lengths. However, they cannot guaran-
tee finding the best solution in arrangements of hundreds or thousands of bases. Blast is an example of this type of 
algorithm [19]. On the other hand, progressive algorithms work by iteratively improving a sequence alignment by 
adding new sequences. The process involves gradually building upon an initial alignment until an optimal solution 
is found [20][21]. Dynamic programming algorithms are commonly used to implement strategies that explore solution 
spaces using a substitution matrix [22]. One example is the ClustalW algorithm [23]. However, errors at the beginning 
of an alignment can propagate to the rest of the operation, which is a drawback of these algorithms. Furthermore, 
another strategy to tackle bigger MSA problems is to iteratively perform partial alignments [24][25].

On the other hand, Genetic algorithms are iterative metaheuristic strategies based on bioinspiration. A thorough 
analysis of the algorithms used in this context can be found in [26].  Due to the metaheuristic origin of Genetic 
Algorithms, which does not guarantee achieving the optimal solution, we assume no comparison between meta-
heuristics and/or stochastic strategies vs. progressive or deterministic strategies. However, metaheuristics permit 
working with more extensive problem instances. 

This work presents a bioinformatics breakthrough and builds on fundamentals established by previous papers, 
such as [27], highlighting the importance of hardware acceleration in DNA sequence alignment. The utility of parallel 
processing was established by [28], which improves the process at the bit level. This work presents an innovative 
methodology that combines multiple techniques, including genetic algorithms, to enhance multiple sequence align-
ment. The methodology also employs the algorithms' performance profile as an efficient comparison method. 

Due to the increasing scientific research in medicine-based informatics, the genetic algorithm has been tested 
using a set of genetic sequences from a group of vegetables of particular interest in medicine, such as Euphorbia 
pulcherrima, which has Anti-Inflammatory, Analgesic, Sedative, and Muscle-Relaxant Activities [29]. Preventing 
health complications is a significant motivation for studying the properties of vegetables.

MATERIALS AND METHODS
 The computational processes in this study were meticulously developed on four identical personal computers 

(PCs) with a Microsoft Windows operating system. These PCs were equipped with 8 GB of RAM and an Intel core i5 
processor, ensuring the study's robustness and reliability. The algorithms were programmed in Java with Netbeans 
IDE, a widely recognized and trusted platform for software development.

Genetic Algorithm 
In this study, a genetic algorithm (GA) is used to simulate the natural adaptation process of living beings. This com-
puter-based representation was initially proposed by [30]. These are some instances of how GA’s are used:[31][32][33][34]. 
While most search algorithms operate on a single solution, a GA operates on a population of solutions. The classical 
GA codes a given problem, generating a population of potential solutions. This method involves crossing, leading to 
mutation, and discovering new and improved solutions. This statement is founded on Darwin's evolutionary theory.

Sequence Alignment
 When there are two sequences (m,n) that can accommodate a limited number of gap insertions, the number of align-
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ments increases as the length of the sequences increases. The number of potential alignments for a pair of sequences 
m and n, with 'k' insertions, can be calculated using Equation (1) as stated by Waterman in 1995: 

𝑓𝑓 = 	 $
(𝑚𝑚 + 𝑛𝑛 − 𝑘𝑘)!

𝑘𝑘! (𝑚𝑚 − 𝑘𝑘)! (𝑛𝑛 − 𝑘𝑘)!
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When attempting to solve the multiple sequence alignment problem using brute force, the problem becomes 
NP-complete. In contrast, dynamic programming has a complexity of O(LN), where L is sequence length, and N is the 
number of sequences. Researchers aim to enhance MSA efficiency via heuristic and metaheuristic approaches and 
parallel implementations to reduce computational costs [35].

Sum-of-pairs multiple alignments: The given strings, represented by S1 to Sk, are used to create multiple alignment. 
This alignment consists of strings T1...TK, which are the same length as the original strings. The new strings are made 
by inserting spacing symbols at specific positions in the original strings. However, only columns full of spacing sym-
bols are not allowed.

Given a multiple alignment T1...TK of length m and a scoring function σ for pairs of characters (σ(a,b)) and pairs of 
character and spacing symbol (σ(a,-) or σ(-,b)), we define its sum-of-pairs score as described in Equation (2):
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Compute a multiple alignment of strings S1 to Sk with a given scoring function sigma to find the maximum sum-of-
pairs score. 

Problem Codification: Text or binary sequences are commonly used for multiple sequence alignment. These 
sequences include array-like data structures, making handling characters and reordering positions easier. As a 
result, the computational effort required by the processing machine is reduced. In this work, each alignment matrix 
A represents an individual, and each matrix position contains a single character (a). Equation (3) shows the matrix 
positions where a nucleotide or a gap can be found.
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Each row in the alignment represents a sequence of the set to be aligned. 

(3)
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FIGURE 1.  The process of evaluation. Nc refers to the number of evaluator instances created to evaluate everyone. Once the 
fitness value is assigned, the process is repeated for the following individuals in the population.

Proposed genetic algorithm: GAAPd 
The algorithm starts with an Initial Population (Pi) of 500 individuals, which is later reduced to a fixed number of 

100 individuals (Pt) between 100 generations. This helps maintain stability in the algorithm and prevents excessive 
computational resource usage. The individuals in the initial population are generated by random potential solutions 
to the problem.

Individuals are evaluated using a parallel process and the widely used Blosum evaluation matrix [36]. This matrix 
helps measure the quality of the in-turn alignment. There are ongoing efforts to parallelize genetic algorithms either 
partially or entirely, and these efforts have demonstrated meaningful results in their respective fields of application 
[37][38][39][40].

To speed up the evaluation process, we divide the workload and assign it to each evaluator instance, which is a 
component of the evaluation class designed for this process. We avoid double evaluations of union regions to ensure 
synchronicity among evaluators.

After completing the task, evaluators assign each population member a fitness value (ft) used on their partial 
results. Figure 1 illustrates the evaluation process described in this work.

According to theory, there is a direct correlation between the number of cores and the reduction of processing 
time (T̂),  stated in Equation (4). However, other intrinsic processes consume resources, such as synchronization 
and quantification.

𝑇𝑇" = 𝑁𝑁𝐹𝐹"𝐸𝐸/𝑁𝑁𝑁𝑁 

 

(4)

Where NF̂ E is the number of evaluated functions. 

During the crossover process, individuals are randomly selected from the best performers of the evaluation process 
in the Pt set. In this context, it implies that only the most outstanding individuals proceed to the crossover phase. 
Their probability of being assigned to another individual is 
Pb= 1/Pt, equal for all.
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A random double-point cut is made (CPA,CPB), and each crossover produces two children integrated into the pop-
ulation. The positions of CPA and CPB in the alignment matrix are also random.

After making the necessary cuts for both individuals, three parts of the father (P1F,P2F,and P3F) and three of the 
mothers (P1M,P2M,and P3M) are obtained.

Child 1 and Child 2 incorporate all six elements shown in Figure 2.

FIGURE 2.  The crossover processes. In this process, two individuals produce three parts each. The resulting child has one part 
from the mother (P2M) and two from the father (P1F,P3F). Another child has one part from the mother and one from the 

father.
The mutation process occurs for progenies [41], which is achieved by inserting or deleting gaps using the hyphen 

character "-" in various positions within the matrix. This process helps to improve the alignment further. The prob-
ability of an individual moving to the mutation process is Pm = 0.2, in which changes are randomly applied to the 
alignment matrix based on the Pm value. 

Various mutation techniques have been documented in the literature, each relying on a specific mutation proba-
bility [41][42][43]. We developed four forms of mutation described as follows:

 a) One of the sequences is randomly selected for mutation, where a maximum of 200 gaps can be inserted   
      at the beginning.

 b) A random point in the matrix is selected for gap insertion. The number of spaces added is randomly de-   
      termined, up to 300.

 c) Insertion of a gap column at a random point. A gap column is inserted at some position in the alignment  
     matrix.

 d) Random gaps are deleted. Up to 100 gaps are removed, and the number of gaps removed is randomly   
     determined within a range of 1 to 100.

Algorithm Pseudocode and GitHub Access
The pseudocode of the proposed algorithm is presented as follows. Let Nc be the number of processing cores and 

Nm the mutation level as a repeating mutation process over a given matrix. 
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TABLE 1. GAAPd versions. 

 1) Population Initialisation (P)
 2) Population Evaluation (Blosum Matrix)
  a. Distribute partial work for cores (Nc) and evaluator Instances.
  b. Execute parallel evaluation process.
  c. Once finished, evaluation instances compute the overall fitness value.
 3) Worst Individuals Elimination.
 4) Crossover.
 5) Repeat progeny mutation (Nm) Times.
 6) Integrate progeny into P.

The GitHub project is available for further analysis at https://github.com/riosew/GAAPd-Software.git.

The algorithm is presented as a set of corresponding classes. The different versions designated as Gp1, Gp2, Gp3, 
and Gp4 can be produced by changing the number of cores (Nc) for the parallel process and the mutation level (Nm) 
to change the mutation cycles. Thus, it can be executed with the different Nc and Nm values in Table 1. It initiates 
the process with a basic visual interface, where the user can change the indicated values. 

Version Nc Nm 

Gp1 1 1 

Gp2 4 4 

Gp3 1 4 

Gp4 4 1 

 
Time Complexity Analysis Big O

The evaluation process is divided into the following parts.

Creation of evaluators: This loop runs several times equal to the number of available cores. Inside this loop, 
another loop runs several times equal to the size of the alignment matrix. Therefore, this part of the algorithm has 
a complexity of O(n*m), where n is the number of cores and m is the size of the matrix. 

Waiting for all evaluators: This loop runs until all evaluators have finished. In the worst case, this could take time 
proportional to the evaluator, which takes the longest to complete the work. 

Traversal of evaluators adding results: This loop runs several times equal to the number of evaluators (equal to the 
number of cores). Therefore, this part of the algorithm has a complexity of O(n), and the total complexity of the 
evaluation process is O(n*m), where n is the number of cores and m is the size of the matrix. However,  the complex-
ity analysis of the nested cycles in the micro evaluator instance (mE) is worth noticing.  The mE instances are as 
many instances as the core Nc value. The complexity of the mE process is O(nmp2). Since n and m are the matrix size, 
and p is the vector size in the Blosum evaluation matrix, which performs a traversing process for n and m. Finally, in 
big(O) analysis, the worst case of operation establishes the total algorithm complexity.

https://github.com/riosew/GAAPd-Software.git
https://github.com/riosew/GAAPd-Software.git
https://github.com/riosew/GAAPd-Software.git
https://github.com/riosew/GAAPd-Software.git
https://github.com/riosew/GAAPd-Software.git
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Experimental Method
This paper's experiment describes a sequence of algorithms and the Performance Profile. 

Set of Sequences
The dataset has been expanded by integrating 13 sequence groups, described in Table 2. It is available for future 

reference on the Galaxy platform [44] at https://usegalaxy.org/u/rioswillars/h/dataset-for-genetic-algorithm. Each 
group comprises N sequences of varying lengths. 

 

Set Name N 

1 Agave victoriae reginae 38 

2 Aristida purpurea 38 

3 Bellucia grossularioides 42 

4 Bursera simaruba 35 
5 Cnidoscolus urens 35 

6 

7 

8 
9 

10 

11 
12 

13 

Cordia alliodora 

Curatella Americana 

Cydista diversifolia 

Echinocactus platyacanthus 

Ephiphylum hookeri 

Erythrina herbacea 

Euphorbia pulcherrima 

Gossypium arboretum 

28 

33 

29 
38 

31 

35 
23 

29 

 

TABLE 2. Test Sequence Sets. 

Algorithms
 Four versions of the GAAPd algorithm were created to evaluate the number of evaluated functions (NF̂E), and 

quality of alignment achieved (Fitness). The computational processing parameters were adjusted at varying levels 
and the impact of processing time due to the adjustments was registered for comparison between the four GAAPd 
versions. The parametters for adjustment are: the number of core decomposition (Nc), and mutation cycles for the 
children in each generation (Nm). These versions are named Gp1, Gp2, Gp3, and Gp4; their characteristics are listed 
in Table 1.

Determination of numerical performance profiles
A comparative analysis was conducted to determine the robustness and efficiency of four methods: Gp1, Gp2, Gp3, 

and Gp4. The study used numerical performance profiles, which define the cumulative distribution function for a 
numerical performance profile. The metrics of interest were the algorithm's execution time, its ability to reach the 
global optimum in the objective function, and the number of evaluations performed during the calculation sequence. 
These factors were compared to analyze the performance and convergence of the optimization method.

This paper aims to compare four different methods based on three metrics. The first metric is the relative distance 

https://usegalaxy.org/u/rioswillars/h/dataset-for-genetic-algorithm
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between the optimal solution found by the optimization method and the known global optimal solution obtained 
by the ClustalW algorithm. This metric measures the robustness of the process, i.e., its ability to locate the global 
optimum of the objective function. The second and third metrics are the number of function evaluations NF̂E 
required during the processing and the time taken (T̂) for process.

To evaluate specific metrics, we considered four optimization methods (ns = 4) and 13 problems or sets of sequences 
(np = 13). Each case study was solved 30 times, with random initial solutions and different random alignments. The 
stop condition was stabilized within the 100-generation limit. However, since the stop criterion is based on the 
generation number, a sensitive tolerance of 1.0E-06 is assumed for the value of the objective function since the 
optimal solution is uncertain. It was set as the convergence criterion for the four methods for all four optimization 
methods and sequence sets, the values of tp,s were calculated using the results of the 30 calculations and the follow-
ing expressions (Equation 5).

𝑡𝑡!,#$ =
𝑓𝑓%̇&' −	𝑓𝑓'%&'
𝑓𝑓%̇&' −	𝑓𝑓%&'(

								𝑡𝑡!,#)*+ = 	𝑁𝑁𝐹𝐹*𝐸𝐸					𝑡𝑡!,#, =	𝑇𝑇* (5)

Being  fôbj the average value of the target function calculated by the optimization method, ḟobj is the global optimum 
of the objective function, fobj is the maximum value for the objective function found within the calculation sequence, 
NF̂ E and T̂ are respectively the average value of the number of functions evaluated and the time to reach the con-
vergence of the optimization method. It is important to note that the values of fôbj , NF̂E y T̂  were determined using 
the 30 numerical experiments performed for the case study. As established in the literature [45], average values are 
often used for behavioral metrics to describe method performance. Based on the above, this study also employs 
such an approach. On the other hand, for all three metrics, the numerical performance profile rate rp,s is defined as 
in Equation (6):

𝑟𝑟!,# =
𝑡𝑡!,#

𝑚𝑚𝑚𝑚𝑚𝑚'𝑡𝑡!,#: 𝑠𝑠 ∈ 𝑆𝑆,
 

 

(6)

Where S corresponds to the set of optimization methods analyzed. This method assigns a value of 1 to the algo-
rithm that performs the best in each problem. Finally, the cumulative probability rate ρs(τ) for the optimization 
strategy S and the metric in question is defined as in the Equation (7):

𝜌𝜌!(𝜏𝜏) =
1
𝑛𝑛"
𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐-𝑝𝑝 ∈ 𝑃𝑃: 𝑟𝑟",! ≤ 	𝜏𝜏5 

 Where τ is a factor that is defined in (1, ∞). In the graph of the performance profile, for example, the graph of ρs  ver-
sus τ , compares the relative performance between optimization methods for the problem group. So far, performance 
profiles have been used by [46] to compare bioinspired algorithms and benchmark functions. However, this concept has 
not been used to compare the methods described in the MSA problem.

RESULTS AND DISCUSSION
The results of the fitness, NF̂E, and time metrics are summarized and described below. As stated, the fitness value 

represents the algorithm's ability to reach better results, iteratively searching for solutions for a given problem. In 

(7)

w
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this case, there are 13 problems for the performance evaluation; the problem count is presented in Table 3 as a C 
value. Furthermore, as described before, each problem C represents a set of sequences to be aligned in the multiple 
sequence alignment problem for the algorithm, and each algorithm (Gp1,Gp2,Gp3, and Gp4) ran 30 times for the cal-
culated performance mean values. Also, the table presents the mean values for the fitness metric on each algorithm 
and each of the 13 multiple alignment problems. 

TABLE 3. Mean values for the Fitness metric of the Gp1, Gp2, Gp3 and Gp4 algorithms for the 13 multiple sequence alignment 
problems. 

C Gp1 Gp2 Gp3 Gp4 
1 62723.7 62385.6 63085.2 63105.4 
2 59747.1 60072.8 59776.5 59605.0 
3 57785.0 58536.2 58413.7 57109.7 
4 52653.2 53250.0 53497.3 53526.8 
5 16934.0 16463.8 16917.7 17270.7 
6 -4932.2 -4724.0 -5529.0 -4903.8 
7 -43993.1 -44014.3 -43848.8 -43909.3 
8 -33991.1 -33350.3 -33782.7 -33775.6 
9 54515.2 54405.9 54311.7 53919.9 

10 -99067.2 -98881.0 -98633.5 -98737.2 
11 52933.6 53749.8 52805.7 52540.1 
12 -4082.1 -4463.7 -4449.5 -4134.2 
13 9190.8 8423.8 8997.1 8699.8 

 The fitness metric shows promising performance results for the Gp2 and Gp3 algorithms since the objective is to 
increment the most possible fitness value. Also, the negative values describe complicated sequences for the align-
ment problem for all four algorithms.

For the number of evaluated functions (NF̂E) metric, Table 4 shows the better performance of the Gp3 algorithm in 
problems 1 and 8. Gp1 performed better in sequence set number 2. Furthermore, all four algorithms present similar 
NF̂E results in sequence set number 12. This shows a significant difference in the algorithms' performance in terms 
of the different strategies they represent. 

TABLE 4. The NF̂E values for each of the four algorithms on the alignment of the 13 sets of sequences.  The results show 
substantial differences between the four algorithms. 

C Gp1 Gp2 Gp3 Gp4 
1 690.867 684.067 679.600 688.733 
2 680.400 693.033 686.433 685.100 
3 684.333 690.700 686.233 686.600 
4 686.033 693.167 688.867 687.900 
5 685.300 687.167 683.233 681.033 
6 684.667 689.867 683.633 684.167 
7 692.133 683.167 690.233 693.933 
8 682.367 690.400 679.600 689.867 
9 686.200 689.400 684.533 681.067 
10 693.400 685.667 686.733 686.733 
11 685.233 680.767 693.333 690.700 
12 682.733 683.367 683.867 683.100 
13 685.933 681.500 683.967 683.600 
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The time it takes for the algorithms to process the stated problems is a commonly used metric for comparing the 
strategies' performance. Table 5 shows the performance in terms of the required time for each of the four algorithms 
to process the 13 multiple alignment problems. It is worth noting that Gp3 took more time than the other algorithms 
to process the alignment problems. Furthermore, Gp4 showed better performance than the different algorithms. The 
efficiency of an algorithm is not determined by the time it takes to run. Still, in this case, the time comparison helps 
show the main difference between the algorithms: the number of nuclei for the hardware process. 

TABLE 5. The comparative of the mean values in the metric Time for the four algorithms in the 13 sets of sequences for the 
multiple alignment problem.

C Gp1 Gp2 Gp3 Gp4 
1 4409.033 3943.900 5065.433 3381.000 
2 4118.767 3554.400 4849.733 2964.267 
3 4582.700 3944.633 5352.100 3268.467 
4 3779.267 3289.667 4397.400 2727.467 
5 3542.733 3141.700 4128.300 2598.000 
6 2649.367 2543.267 3106.400 2061.000 
7 3439.833 3138.667 4025.133 2667.833 
8 2929.867 2753.867 3396.033 2300.000 
9 4546.700 3874.767 5232.233 3361.800 
10 5006.133 4514.933 5748.400 3919.100 
11 3866.033 3288.933 4525.900 2901.100 
12 2501.500 2321.367 2912.000 2032.300 
13 4440.800 3894.400 5086.733 3478.067 

 
We present a Microsoft Excel file named results in the provided github link for a detailed description of the tables 

above.
Figure 3 displays the performance profile for the metric tp,s. This metric is associated with the ability of the algo-

rithm to reach a better solution to a given problem. The figure 3 shows the optimization method's ability to 
approach the global optimum in the problems considered. Gp1 and Gp3 maintain remarkable performance and 
approach convergence. This can be attributed to the fact that they perform single-core processing with maximum 
and minimum mutation levels of 1 and 4, respectively. It is worth noting that this characteristic is in Gp1 and Gp3 
and contributes to the state of the art of genetic programming, particularly regarding the mutation level for the 
individuals in the Genetic Algorithms population. In other words, this means that the medium-level mutation had 
no fitness improvement benefits for this case study. 

FIGURE 3.  Numerical performance profile for fitness metric  tp,s described as fitness value for each of the four algorithms.

d

d
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Regarding efficiency, the metric NF̂E is associated with the number of evaluated functions and represents the 
hardware computational effort that the algorithmic strategy performs. Figure 4 is the performance profile, which 
indicates that Gp4 performs remarkably well. This may be because Gp4 employs the fewest mutations in the 
Genetic Algorithm and the highest number of cores in its algorithmic strategy. Similarly, Gp1 also demonstrates 
remarkable performance. It is worth noting that the previously described fitness results are consistent with the 
performance of Gp1 with its algorithmic strategy by using the fewest number of processing cores and the lowest 
level of mutation. 

FIGURE 4.  Numerical performance profile for the metric NF̂E.

Figure 5 indicates that the Gp4 optimization method outperforms the others in terms of efficiency, as measured 
by the time spent on optimization T̂ . This may be because Gp4 utilizes greater parallel processing cores and fewer 
mutation processing than the other methods. 

FIGURE 4.  Numerical performance profile for the metric T̂ .

However, the Gp4 algorithm did not produce remarkable fitness or NF̂E values results. This shows that ensuring 
an efficient algorithmic and mutation process is more important than incorporating hardware resources.

CONCLUSIONS
This paper compares and discusses four strategies of the Genetic Algorithm method using the numerical perfor-

mance profile model [47] in a set of genetic sequences. Based on the findings, the Gp1 approach is the most robust 
compared to other methods studied in this research. However, the efficiency, measured by the number of func-
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tions evaluated and convergence time, varies between the alignment methods. Gp4 is the method with the fewest 
evaluated functions and the highest processing speed. Thus, it can be concluded that the number of cores influ-
ences the alignment method's efficiency in parallel processing, and the robustness of the alignment method is 
related to the number of mutations. However, the Gp2 algorithm, with the highest core number and mutation level, 
did not perform remarkably well compared to the other strategies that varied the mutation level and number of 
cores. 

Increasing the sequences in the data set is recommended to obtain more accurate results. By testing with the data 
set used in this research, these findings can be compared to other studies on genetic algorithms. Finally, it is 
essential to note that variations in mutation levels or other parameters can affect the performance of the different 
strategies.

On the other hand, conventional computer equipment can produce promising results when processing genetic 
information if the algorithms are specifically designed to make the most of hardware resources. Additionally, the 
computational effort of the hardware used impacts the number of evaluated functions. The quality of the solution 
obtained in the case of multiple sequence alignment relies on specific parameters of the genetic algorithm, such 
as the size of the population, the mutation level, and the crossing method. Moreover, the comparison method 
based on the determination of the performance profile is recommended as a valuable strategy for contrasting 
results in different metrics of interest. 
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