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ABSTRACT 
Gait is the main locomotion way for human beings as an autonomous decision. Due to the increase in people with 
walking disabilities, the precision in gait analysis for purposes in clinical diagnosis, sports medicine or biomechani-
cal research for the design of assistive technologies is of special relevance. The literature reports notable contribu-
tions in technological developments with diverse applications; and in some cases, algorithms for characterization 
and gait analysis; however, more studies related to gait kinematics are necessary, such as the solution proposed 
in this work. In this paper, we focus on studying the forward kinematics of the lower limbs in human gait, using 
in a novel way quaternions algebra as mathematical tool and comparative analysis with classical methods is esta-
blished. Gait analysis unlike other works is carried out by evaluating the rotational and tilting movements of the 
pelvis, flexion-extension of the hip and knee; as well as dorsiflexion and plantarflexion of the ankle. Finally, an as-
sessment of normal, mild crouch and severe crouch gaits in the three anatomical planes is performed; and a metric 
based on the Euclidean norm in the cartesian space is used to evaluate these gaits. 
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INTRODUCTION
Gait analysis has been used to evaluate different con-

ditions in sport sciences, biomechanics and clinical 
diagnosis [1]. In clinical environments, this assessment 
tool has been applied to diagnose: hemiplegia [2], 
Achilles tendinopathy [3], inversion sprains [4], 
Parkinson's disease [5], hip arthroplasty [6], knee osteo-
arthritis [7], idiopathic scoliosis [8], cervical myelopathy 
[9], among others. In the same way, gait analysis has 
allowed to estimate the progress of patients rehabili-
tated after a stroke [10]; or simply to determine the joint 
displacement in the hip, knee and ankle [11] [12]. In this 
paper, we focus on studying the kinematics of the lower 
limbs in human gait based on quaternions algebra. 

On the other hand, quaternions are useful to perform 
a rotation of vectors in a 3D space [13]. Today, they are 
widely used in computer graphics, multirotor tracking 
and control approaches, and kinematics and dynamics 
of rigid bodies [14]. Therefore, the free representation of 
the quaternions in the Euclidian space has also been 
used in navigation, computer-aided design and com-
puter vision [15].

Recently, interest in robotic developments has been 
increased. The most well-known methods for robot 
kinematics are the Denavit-Hartenberg convention [16] 
and geometric methods [17]. Therefore, most of the 
work done to model robot kinematics using quaterni-
ons continues to follow the D-H approach, wasting 
quaternions capacity [15]. Some robotic applications 
have been focused on gait approaches to establish the 
imitation of human gait. For example, a robotic plat-
form for the kinetics and kinematics characterization 
during gait has been used [18]. Therefore, mathemati-
cal models that associate forward kinematics of posi-
tion are required [19]. For this reason, in this work we 
present a theoretical approach for modeling forward 
kinematics of position of the lower limbs for human 
gait using quaternions algebra not based on the D-H 
convention. 

Related work
Some methods have been proposed in the literature 

for the three-dimensional analysis of gait kinematics 
using wearable sensors and quaternions algebra [20] [21]. 
In the first work, the initial orientations are computed 
by quaternions of the inertial sensors placed in pelvis, 
femur, tibia and foot, which are acquired from the 
acceleration data, while the angular displacement is 
defined from the angular velocity. Subsequently, the 
orientations of the independent body segments are 
obtained from the sensor’s orientation and the calibra-
tion rotation matrix, to then synthesize a 3D model of 
the whole body concerning the global reference frame. 
Similarly, the algebra-based position of quaternions of 
the frame of each joint is obtained from the gyroscope 
and the accelerometer signals [21]. Therefore, in addi-
tion to the existence of position estimation error 
derived from the use of inertial sensors, in both works, 
there is a low performance in the gait analysis, since 
anthropometry is not directly considered and, the 
joint system is handled by an independent structure 
and not as a serial chain.

On the other hand, in the work [22], a local analysis of 
the stability of the joints during walking is carried out 
using a marker-based optical system. This implies that 
forward kinematics of position is also obtained from 
the position of the markers and the calibration test [5] [6] 

[7]. In addition to what has been mentioned in this sec-
tion in the aforementioned works, only the hip, knee 
and ankle are analyzed, that is why, to have greater 
precision in the kinematic calculation of gait, it is nec-
essary to include the rotational and tilting movements 
of the pelvis. 

Problem statement
Generally, the normal gait pattern is established in 

the joint space [23] and independently from each ana-
tomical movement of each joint structure. Which lim-
its the global perception of the performance of the 
joint system and the use of well-known metrics such 
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as speed, cadence and stride length, which are estab-
lished in the operational space (gait space) and are 
related to anthropometry of the individual. Therefore, 
the calculation of direct kinematics is necessary to 
determine the gait pattern in cartesian space as a func-
tion of joint variables.

Although the well-known Denavit-Hartenberg DH [16] 
convention and geometric [17] methods can solve well 
the forward kinematics of position in the sagittal plane 
of the 3 DoF joint system of the lower limbs (Figure 2), 
if the number of degrees of freedom of analysis in the 
transversal and frontal planes is increased as in the 8 
DoF system (Figure 3), these methods require a more 
complex mathematical modeling and are less flexible 
in the description of the evolutions of the system of 
the extremities with respect to the orthonormal frame 
of reference. Therefore, a method of lower mathemati-
cal complexity, with a low computational cost and that 
requires little storage capacity [15] is required for the 
analysis of the gait in cartesian space as the one pro-
posed in this contribution.

Proposed solution
In this work, a method to calculate the forward kine-

matics of position of the articular system of the lower 
limbs during gait, using quaternion algebra as a math-
ematical tool is proposed. To this end, the modeling of 
the articular system of the lower extremities is estab-
lished as an open serial chain, which allows obtaining 
a global performance of the system and a reference 
pattern of normal gait in the operational space. Also, 
the analysis in the gait space allows the evaluation of 
the metrics of that space and some not common met-
rics for this purpose such as: the Euclidean distance, 
the areas and the centroid between each reference. 
Finally, to evaluate abnormal performances in the car-
tesian space for reference pattern, a comparative anal-
ysis is performed in the 3 anatomical planes for a nor-
mal gait and 2 types of crouched gaits, of which their 
forward position kinematics is calculated from the 

articular anatomical positions related to the rotation 
and inclination of the pelvis, dorsiflexion of the hips 
and knees, as well as dorsiflexion and plantarflexion 
of the ankles.

Paper organization
In this work, the anthropometry and the joint param-

eters considered as the starting point are adapted to [20] 
and [24], respectively. Subsequently, mathematical 
modeling is proposed to calculate the forward kine-
matics of position of the 3 DoF lower limbs joint sys-
tem (Figure 2), which directly considers anthropome-
try, using the methods: i) geometric, ii) Denavit-
Hartenberg and iii) quaternions. Later, due to the 
increase in complexity, the modeling of the forward 
kinematics 8 DoF system (Figure 3) is developed using 
quaternions, a simulation of the kinematics is per-
formed and the cartesian coordinates and joint vari-
ables of both extremities are visualized. Finally, a 
metric based on the Euclidean distance between both 
ends of the feet (big toe), ankles and knees are calcu-
lated.

To describe the work done, this paper is organized as 
follows: Related work, problem statement and pro-
posed solution are described in the introduction sec-
tion. In the materials and methods section, the math-
ematical modeling for the calculation of the forward 
kinematics of position of joint systems and lower 
limbs using the methods: i) geometric, ii) Denavit-
Hartenberg and iii) quaternions algebra, is presented. 
The analysis and discussion of results is shown in the 
corresponding section and finally, the last section 
focuses on the conclusions. 

MATERIALS AND METHODS
Kinematics is the study of the motion of mechanical 

systems without regard to the cause of the motion. 
The most well-known methods for forward kinematics 
of position of robots are the Denavit-Hartenberg con-
vention [16] and geometric [17] methods. In this work, 
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the lower limb joint system is considered as a set of 
rigid links connected together at various joints during 
the swing phase of the gait cycle. Therefore, the meth-
odologies used in robotics such as: i) geometric method 
ii) D-H) and iii) quaternions [25], can be used to calcu-
late the forward kinematics of position of the lower 
limbs during gait, which is described as follows. 

Forward kinematics of lower limbs
 

Hip – knee - ankle system (HAK) 
To develop the kinematic analysis in this work, the 

anatomical terms describing the relationships of the 
different parts of the body are based on the anatomical 
positions of sagittal, frontal and transverse planes; 
and their main directions [23]. Firstly, we develop a syn-
thesis of forward kinematics of position of 3 DoF sys-
tem as a planar robot, whose home position in (Figure 
2) of the first link is on the y0R(-) axis of the origin of 
the base frame OΣ0R, and the origins of the orthonor-
mal frames of the robot correspond with the reference 
points of the joints of the human's lower right limb 
model (Table 1). In this case, the anatomical sagittal 
plane corresponds to the x-y plane of the robot, while 
that z0R(+), x0R(+) and y0R(+) axes correspond to the 

right, front and top directions, respectively [23]. The 
model features lower limb right joint as 3 rigid-body 
segment 1) femur, 2) tibia and 3) foot and the anthro-
pometry is adopted from [20]. The relative motion of 
these segments is defined successively by quaternions 
algebra. 

Let, l1R , l2R, l3R, Q1R, Q2R and Q3R the anatomical length 
dimesions of femr, tibia and foot, and the flexion-ex-
tension angles of the hip and knee, as well as dorsi-
flexion and plantarflexion of the ankle, of the right 
lower limb, respectively. Then, if we consider symme-
try for the left limb it is possible to apply the methods 
mentioned in the previous section to get forward kine-
matics of position for both right (denoted by subscript 

FIGURE 1. Methodology for the modeling and visualization of the forward kinematics of position of the
lower limbs during gait using methods: i) geometric, ii) Denavit-Hartenberg and iii) quaternions for joint

and anthropometry variables established in [20] and [24], respectively.

TABLE 1. Correspondences between the
orthonormal frames of the 3 DOF planar robot
and the join references of the body (Figure 2).Tabla	1	

	
Orthonormal 

cartesian frames 
Joint references of 

The right lower limb 

𝑂𝑂Σ!"(𝑥𝑥!", 𝑦𝑦!", 𝑧𝑧!") Hip 

𝑂𝑂Σ#"(𝑥𝑥#", 𝑦𝑦#", 𝑧𝑧#") Knee 

𝑂𝑂Σ$"(𝑥𝑥$", 𝑦𝑦$", 𝑧𝑧$") Ankle 

OΣ%"(𝑥𝑥%", 𝑦𝑦%", 𝑧𝑧%") Big toe 

	
	

Tabla	2	
	

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒊𝒊 𝜽𝜽𝒊𝒊 𝒅𝒅𝒊𝒊   (𝜷𝜷𝒊𝒊) 𝒍𝒍𝒊𝒊 𝜶𝜶𝒊𝒊 

1 𝑞𝑞#" −
𝜋𝜋
2

 β#" 𝑙𝑙#" 0 

2 𝑞𝑞$" β$" 𝑙𝑙$" 0 

3 𝑞𝑞%" +
𝜋𝜋
2

 β%" 𝑙𝑙%" 0 

	
	

Tabla	3	
	

Gait type  Movement model 

Normal (N) normal  

Mild crouch (MC)  crouch1 

Severe crouch (SC) crouch4 
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R) and left (denoted by subscript L) limbs. Commonly, 
hip, knee and ankle have only been used to analyze 
the gait kinematics [11] [12] [20] [26].

In a 3 DoF planar robot, the width of each servomotor 
and the thickness of the joint bar are determined by 
β1R, β2R and β3R, for simplicity in this case, these values 
are equal to 0. The placement of the ziR axes coincide 
with the axes of rotation of the joints, while the xiR axis 
is assigned in the direction of the link and the yiR axis 
according to the right-hand rule. Meanwhile, q1R, q2R 

and q3R are the hip and knee flexo-extension, and 
ankle dorsiflexion and plantarflexion, with respect to 
the z0R, z1R and z2R axis, respectively. 

𝑥𝑥!" = 𝑙𝑙#" s$!" + 𝑙𝑙%"s$!"&$#" + 𝑙𝑙!"c$!"&$#"&$$" 
 
 

𝑦𝑦!" = −𝑙𝑙#" c$!" − 𝑙𝑙%"c$!"&$#" + 𝑙𝑙!"s$!"&$#"&$$" 
 
 

𝑧𝑧!" = β#" + β$" + β!" = 0 
 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟏𝟏𝟎𝟎 = #

𝑠𝑠$!" 𝑐𝑐$!" 	0 	𝑙𝑙%&𝑠𝑠$!" 	
−𝑐𝑐$!" 𝑠𝑠$!" 0 −𝑙𝑙%&𝑐𝑐$!"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟏𝟏𝟎𝟎
𝟐𝟐𝟎𝟎 = #

𝑐𝑐$#" −𝑠𝑠$#" 	0 	𝑙𝑙(&𝑐𝑐$#" 	
𝑠𝑠$#" 𝑐𝑐$#" 0 𝑙𝑙(&𝑠𝑠$#"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟐𝟐𝟎𝟎
𝟑𝟑𝟎𝟎 = #

−𝑠𝑠$$" −𝑐𝑐$$" 	0 	−𝑙𝑙*&𝑠𝑠$$" 	
𝑐𝑐$$" −𝑠𝑠$$" 0 𝑙𝑙*&𝑐𝑐$$"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟑𝟑𝟎𝟎 = *

𝑐𝑐$!"&$#"&$$" −𝑠𝑠$!"&$#"&$$" 	0 𝑥𝑥!"
𝑠𝑠$!"&$#"&$$" 𝑐𝑐$!"&$#"&$$" 0 𝑦𝑦!"

0	 0	 1	 𝑧𝑧!"
0 0 0 1

	1 

 
 

𝑄𝑄#𝑄𝑄% = 𝑎𝑎#𝑎𝑎%	– 	𝒗𝒗𝟏𝟏 · 	𝒗𝒗𝟐𝟐 +	𝑎𝑎#𝒗𝒗𝟐𝟐 	+ 	𝑎𝑎%𝒗𝒗𝟏𝟏 + 	𝒗𝒗𝟏𝟏	𝒙𝒙	𝒗𝒗𝟐𝟐 
 
 

𝒖𝒖 = -

𝑥𝑥
𝑏𝑏0

𝑦𝑦
𝑏𝑏0

𝑧𝑧
𝑏𝑏0
3 =

𝑥𝑥
||𝒗𝒗|| 𝒊𝒊 +

𝑦𝑦
||𝒗𝒗|| 𝒋𝒋 +

𝑧𝑧
||𝑣𝑣|| 𝒌𝒌 

 
𝑄𝑄 = cos?+

(
@ + 𝒖𝒖	𝑠𝑠𝑠𝑠𝑠𝑠	 ?+

(
@   

 
 

𝑅𝑅(𝑄𝑄)𝒗𝒗 = 𝑄𝑄𝒗𝒗𝑄𝑄F   
 
 

𝑄𝑄%& = cos ?
𝑞𝑞%&
2 @ + 𝒖𝒖𝟏𝟏𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞%&
2 @ 

 
 

𝑄𝑄(& = cos ?
𝑞𝑞(&
2 @ + 𝒖𝒖𝟐𝟐𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞(&
2 @ 

 
 

𝑄𝑄*& = cos ?
𝑞𝑞*&
2 @ + 𝒖𝒖𝟑𝟑𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞*&
2 @ 

 
 

𝐎𝐎𝐎𝐎𝟑𝟑𝟎𝟎𝟑𝟑 =		𝑄𝑄%&	𝐎𝐎𝐎𝐎𝟏𝟏𝟎𝟎	𝑄𝑄%&FFFFF 	+ 𝑄𝑄%&	𝑄𝑄(&	𝐎𝐎𝐎𝐎𝟐𝟐𝟎𝟎	𝑄𝑄(&FFFFF	𝑄𝑄%&FFFFF + 𝑄𝑄%&	𝑄𝑄(&	𝑄𝑄*&	𝐎𝐎𝐎𝐎𝟑𝟑𝟎𝟎	𝑄𝑄*&FFFFF	𝑄𝑄(&FFFFF	𝑄𝑄%&FFFFF   
 
 

(1)

Geometric method
The position of the right big toe [x3R, y3R, z3R]T ϵ R3x1 

without orientation, could be obtained geometri-
cally adding a link in the x0R axis direction, whose 
joint is arranged in the Σ2R frame origin (Figure 2) 
[17], such that, the coordinates of such position are 
determined as

𝑥𝑥!" = 𝑙𝑙#" s$!" + 𝑙𝑙%"s$!"&$#" + 𝑙𝑙!"c$!"&$#"&$$" 
 
 

𝑦𝑦!" = −𝑙𝑙#" c$!" − 𝑙𝑙%"c$!"&$#" + 𝑙𝑙!"s$!"&$#"&$$" 
 
 

𝑧𝑧!" = β#" + β$" + β!" = 0 
 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟏𝟏𝟎𝟎 = #

𝑠𝑠$!" 𝑐𝑐$!" 	0 	𝑙𝑙%&𝑠𝑠$!" 	
−𝑐𝑐$!" 𝑠𝑠$!" 0 −𝑙𝑙%&𝑐𝑐$!"
0	 0	 1	 0	
0 0 0 1
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𝑠𝑠$!" 𝑐𝑐$!" 	0 	𝑙𝑙%&𝑠𝑠$!" 	
−𝑐𝑐$!" 𝑠𝑠$!" 0 −𝑙𝑙%&𝑐𝑐$!"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟏𝟏𝟎𝟎
𝟐𝟐𝟎𝟎 = #

𝑐𝑐$#" −𝑠𝑠$#" 	0 	𝑙𝑙(&𝑐𝑐$#" 	
𝑠𝑠$#" 𝑐𝑐$#" 0 𝑙𝑙(&𝑠𝑠$#"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟐𝟐𝟎𝟎
𝟑𝟑𝟎𝟎 = #

−𝑠𝑠$$" −𝑐𝑐$$" 	0 	−𝑙𝑙*&𝑠𝑠$$" 	
𝑐𝑐$$" −𝑠𝑠$$" 0 𝑙𝑙*&𝑐𝑐$$"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟑𝟑𝟎𝟎 = *

𝑐𝑐$!"&$#"&$$" −𝑠𝑠$!"&$#"&$$" 	0 𝑥𝑥!"
𝑠𝑠$!"&$#"&$$" 𝑐𝑐$!"&$#"&$$" 0 𝑦𝑦!"

0	 0	 1	 𝑧𝑧!"
0 0 0 1

	1 

 
 

𝑄𝑄#𝑄𝑄% = 𝑎𝑎#𝑎𝑎%	– 	𝒗𝒗𝟏𝟏 · 	𝒗𝒗𝟐𝟐 +	𝑎𝑎#𝒗𝒗𝟐𝟐 	+ 	𝑎𝑎%𝒗𝒗𝟏𝟏 + 	𝒗𝒗𝟏𝟏	𝒙𝒙	𝒗𝒗𝟐𝟐 
 
 

𝒖𝒖 = -

𝑥𝑥
𝑏𝑏0

𝑦𝑦
𝑏𝑏0

𝑧𝑧
𝑏𝑏0
3 =

𝑥𝑥
||𝒗𝒗|| 𝒊𝒊 +

𝑦𝑦
||𝒗𝒗|| 𝒋𝒋 +

𝑧𝑧
||𝑣𝑣|| 𝒌𝒌 

 
𝑄𝑄 = cos?+

(
@ + 𝒖𝒖	𝑠𝑠𝑠𝑠𝑠𝑠	 ?+

(
@   

 
 

𝑅𝑅(𝑄𝑄)𝒗𝒗 = 𝑄𝑄𝒗𝒗𝑄𝑄F   
 
 

𝑄𝑄%& = cos ?
𝑞𝑞%&
2 @ + 𝒖𝒖𝟏𝟏𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞%&
2 @ 

 
 

𝑄𝑄(& = cos ?
𝑞𝑞(&
2 @ + 𝒖𝒖𝟐𝟐𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞(&
2 @ 

 
 

𝑄𝑄*& = cos ?
𝑞𝑞*&
2 @ + 𝒖𝒖𝟑𝟑𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞*&
2 @ 

 
 

𝐎𝐎𝐎𝐎𝟑𝟑𝟎𝟎𝟑𝟑 =		𝑄𝑄%&	𝐎𝐎𝐎𝐎𝟏𝟏𝟎𝟎	𝑄𝑄%&FFFFF 	+ 𝑄𝑄%&	𝑄𝑄(&	𝐎𝐎𝐎𝐎𝟐𝟐𝟎𝟎	𝑄𝑄(&FFFFF	𝑄𝑄%&FFFFF + 𝑄𝑄%&	𝑄𝑄(&	𝑄𝑄*&	𝐎𝐎𝐎𝐎𝟑𝟑𝟎𝟎	𝑄𝑄*&FFFFF	𝑄𝑄(&FFFFF	𝑄𝑄%&FFFFF   
 
 

(3)

z0R

y(0,1,2)R
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a) b)

FIGURE 2. a) Open kinematic chain that represents the 
frames that define joint movements in the sagittal plane.
b) Correspondence of the frames to the musculoskeletal 

reference points in the female model [27].

 where cqiR and sqiR are the cosine and sine transcenden-
tal functions that depend on qiR, respectively.

Similarly, the position of the left big toe could be 
obtained by the D-H convention.

Denavit – Hartenberg convention
If we assume the same configuration (Figure 2), by 

means of the D-H convention [16] the parameters of the 
joints and the links of the right lower limb are shown 
in (Table 2).

a) b)

TABLE 2. Denavit-Hartenberg parameters
for the HAK system (Figure 2).

Tabla	1	
	

Orthonormal 
cartesian frames 

Joint references of 
The right lower limb 

𝑂𝑂Σ!"(𝑥𝑥!", 𝑦𝑦!", 𝑧𝑧!") Hip 

𝑂𝑂Σ#"(𝑥𝑥#", 𝑦𝑦#", 𝑧𝑧#") Knee 

𝑂𝑂Σ$"(𝑥𝑥$", 𝑦𝑦$", 𝑧𝑧$") Ankle 

OΣ%"(𝑥𝑥%", 𝑦𝑦%", 𝑧𝑧%") Big toe 

	
	

Tabla	2	
	

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒊𝒊 𝜽𝜽𝒊𝒊 𝒅𝒅𝒊𝒊   (𝜷𝜷𝒊𝒊) 𝒍𝒍𝒊𝒊 𝜶𝜶𝒊𝒊 

1 𝑞𝑞#" −
𝜋𝜋
2

 β#" 𝑙𝑙#" 0 

2 𝑞𝑞$" β$" 𝑙𝑙$" 0 

3 𝑞𝑞%" +
𝜋𝜋
2

 β%" 𝑙𝑙%" 0 

	
	

Tabla	3	
	

Gait type  Movement model 

Normal (N) normal  

Mild crouch (MC)  crouch1 

Severe crouch (SC) crouch4 

	

Thus, the homogeneous transformation matrices for 
each link can be written as

𝑥𝑥!" = 𝑙𝑙#" s$!" + 𝑙𝑙%"s$!"&$#" + 𝑙𝑙!"c$!"&$#"&$$" 
 
 

𝑦𝑦!" = −𝑙𝑙#" c$!" − 𝑙𝑙%"c$!"&$#" + 𝑙𝑙!"s$!"&$#"&$$" 
 
 

𝑧𝑧!" = β#" + β$" + β!" = 0 
 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟏𝟏𝟎𝟎 = #

𝑠𝑠$!" 𝑐𝑐$!" 	0 	𝑙𝑙%&𝑠𝑠$!" 	
−𝑐𝑐$!" 𝑠𝑠$!" 0 −𝑙𝑙%&𝑐𝑐$!"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟏𝟏𝟎𝟎
𝟐𝟐𝟎𝟎 = #

𝑐𝑐$#" −𝑠𝑠$#" 	0 	𝑙𝑙(&𝑐𝑐$#" 	
𝑠𝑠$#" 𝑐𝑐$#" 0 𝑙𝑙(&𝑠𝑠$#"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟐𝟐𝟎𝟎
𝟑𝟑𝟎𝟎 = #

−𝑠𝑠$$" −𝑐𝑐$$" 	0 	−𝑙𝑙*&𝑠𝑠$$" 	
𝑐𝑐$$" −𝑠𝑠$$" 0 𝑙𝑙*&𝑐𝑐$$"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟑𝟑𝟎𝟎 = *

𝑐𝑐$!"&$#"&$$" −𝑠𝑠$!"&$#"&$$" 	0 𝑥𝑥!"
𝑠𝑠$!"&$#"&$$" 𝑐𝑐$!"&$#"&$$" 0 𝑦𝑦!"

0	 0	 1	 𝑧𝑧!"
0 0 0 1

	1 

 
 

𝑄𝑄#𝑄𝑄% = 𝑎𝑎#𝑎𝑎%	– 	𝒗𝒗𝟏𝟏 · 	𝒗𝒗𝟐𝟐 +	𝑎𝑎#𝒗𝒗𝟐𝟐 	+ 	𝑎𝑎%𝒗𝒗𝟏𝟏 + 	𝒗𝒗𝟏𝟏	𝒙𝒙	𝒗𝒗𝟐𝟐 
 
 

𝒖𝒖 = -

𝑥𝑥
𝑏𝑏0

𝑦𝑦
𝑏𝑏0

𝑧𝑧
𝑏𝑏0
3 =

𝑥𝑥
||𝒗𝒗|| 𝒊𝒊 +

𝑦𝑦
||𝒗𝒗|| 𝒋𝒋 +

𝑧𝑧
||𝑣𝑣|| 𝒌𝒌 

 
𝑄𝑄 = cos?+

(
@ + 𝒖𝒖	𝑠𝑠𝑠𝑠𝑠𝑠	 ?+

(
@   

 
 

𝑅𝑅(𝑄𝑄)𝒗𝒗 = 𝑄𝑄𝒗𝒗𝑄𝑄F   
 
 

𝑄𝑄%& = cos ?
𝑞𝑞%&
2 @ + 𝒖𝒖𝟏𝟏𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞%&
2 @ 

 
 

𝑄𝑄(& = cos ?
𝑞𝑞(&
2 @ + 𝒖𝒖𝟐𝟐𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞(&
2 @ 

 
 

𝑄𝑄*& = cos ?
𝑞𝑞*&
2 @ + 𝒖𝒖𝟑𝟑𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞*&
2 @ 

 
 

𝐎𝐎𝐎𝐎𝟑𝟑𝟎𝟎𝟑𝟑 =		𝑄𝑄%&	𝐎𝐎𝐎𝐎𝟏𝟏𝟎𝟎	𝑄𝑄%&FFFFF 	+ 𝑄𝑄%&	𝑄𝑄(&	𝐎𝐎𝐎𝐎𝟐𝟐𝟎𝟎	𝑄𝑄(&FFFFF	𝑄𝑄%&FFFFF + 𝑄𝑄%&	𝑄𝑄(&	𝑄𝑄*&	𝐎𝐎𝐎𝐎𝟑𝟑𝟎𝟎	𝑄𝑄*&FFFFF	𝑄𝑄(&FFFFF	𝑄𝑄%&FFFFF   
 
 

(4)

z0R

y(0,1,2)R

x0R

q1R

z1R

x1R
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l2R

z2R
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Ʃ3R
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𝑥𝑥!" = 𝑙𝑙#" s$!" + 𝑙𝑙%"s$!"&$#" + 𝑙𝑙!"c$!"&$#"&$$" 
 
 

𝑦𝑦!" = −𝑙𝑙#" c$!" − 𝑙𝑙%"c$!"&$#" + 𝑙𝑙!"s$!"&$#"&$$" 
 
 

𝑧𝑧!" = β#" + β$" + β!" = 0 
 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟏𝟏𝟎𝟎 = #

𝑠𝑠$!" 𝑐𝑐$!" 	0 	𝑙𝑙%&𝑠𝑠$!" 	
−𝑐𝑐$!" 𝑠𝑠$!" 0 −𝑙𝑙%&𝑐𝑐$!"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟏𝟏𝟎𝟎
𝟐𝟐𝟎𝟎 = #

𝑐𝑐$#" −𝑠𝑠$#" 	0 	𝑙𝑙(&𝑐𝑐$#" 	
𝑠𝑠$#" 𝑐𝑐$#" 0 𝑙𝑙(&𝑠𝑠$#"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟐𝟐𝟎𝟎
𝟑𝟑𝟎𝟎 = #

−𝑠𝑠$$" −𝑐𝑐$$" 	0 	−𝑙𝑙*&𝑠𝑠$$" 	
𝑐𝑐$$" −𝑠𝑠$$" 0 𝑙𝑙*&𝑐𝑐$$"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟑𝟑𝟎𝟎 = *

𝑐𝑐$!"&$#"&$$" −𝑠𝑠$!"&$#"&$$" 	0 𝑥𝑥!"
𝑠𝑠$!"&$#"&$$" 𝑐𝑐$!"&$#"&$$" 0 𝑦𝑦!"

0	 0	 1	 𝑧𝑧!"
0 0 0 1

	1 

 
 

𝑄𝑄#𝑄𝑄% = 𝑎𝑎#𝑎𝑎%	– 	𝒗𝒗𝟏𝟏 · 	𝒗𝒗𝟐𝟐 +	𝑎𝑎#𝒗𝒗𝟐𝟐 	+ 	𝑎𝑎%𝒗𝒗𝟏𝟏 + 	𝒗𝒗𝟏𝟏	𝒙𝒙	𝒗𝒗𝟐𝟐 
 
 

𝒖𝒖 = -

𝑥𝑥
𝑏𝑏0

𝑦𝑦
𝑏𝑏0

𝑧𝑧
𝑏𝑏0
3 =

𝑥𝑥
||𝒗𝒗|| 𝒊𝒊 +

𝑦𝑦
||𝒗𝒗|| 𝒋𝒋 +

𝑧𝑧
||𝑣𝑣|| 𝒌𝒌 

 
𝑄𝑄 = cos?+

(
@ + 𝒖𝒖	𝑠𝑠𝑠𝑠𝑠𝑠	 ?+

(
@   

 
 

𝑅𝑅(𝑄𝑄)𝒗𝒗 = 𝑄𝑄𝒗𝒗𝑄𝑄F   
 
 

𝑄𝑄%& = cos ?
𝑞𝑞%&
2 @ + 𝒖𝒖𝟏𝟏𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞%&
2 @ 

 
 

𝑄𝑄(& = cos ?
𝑞𝑞(&
2 @ + 𝒖𝒖𝟐𝟐𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞(&
2 @ 

 
 

𝑄𝑄*& = cos ?
𝑞𝑞*&
2 @ + 𝒖𝒖𝟑𝟑𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞*&
2 @ 

 
 

𝐎𝐎𝐎𝐎𝟑𝟑𝟎𝟎𝟑𝟑 =		𝑄𝑄%&	𝐎𝐎𝐎𝐎𝟏𝟏𝟎𝟎	𝑄𝑄%&FFFFF 	+ 𝑄𝑄%&	𝑄𝑄(&	𝐎𝐎𝐎𝐎𝟐𝟐𝟎𝟎	𝑄𝑄(&FFFFF	𝑄𝑄%&FFFFF + 𝑄𝑄%&	𝑄𝑄(&	𝑄𝑄*&	𝐎𝐎𝐎𝐎𝟑𝟑𝟎𝟎	𝑄𝑄*&FFFFF	𝑄𝑄(&FFFFF	𝑄𝑄%&FFFFF   
 
 

(5)

𝑥𝑥!" = 𝑙𝑙#" s$!" + 𝑙𝑙%"s$!"&$#" + 𝑙𝑙!"c$!"&$#"&$$" 
 
 

𝑦𝑦!" = −𝑙𝑙#" c$!" − 𝑙𝑙%"c$!"&$#" + 𝑙𝑙!"s$!"&$#"&$$" 
 
 

𝑧𝑧!" = β#" + β$" + β!" = 0 
 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟏𝟏𝟎𝟎 = #

𝑠𝑠$!" 𝑐𝑐$!" 	0 	𝑙𝑙%&𝑠𝑠$!" 	
−𝑐𝑐$!" 𝑠𝑠$!" 0 −𝑙𝑙%&𝑐𝑐$!"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟏𝟏𝟎𝟎
𝟐𝟐𝟎𝟎 = #

𝑐𝑐$#" −𝑠𝑠$#" 	0 	𝑙𝑙(&𝑐𝑐$#" 	
𝑠𝑠$#" 𝑐𝑐$#" 0 𝑙𝑙(&𝑠𝑠$#"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟐𝟐𝟎𝟎
𝟑𝟑𝟎𝟎 = #

−𝑠𝑠$$" −𝑐𝑐$$" 	0 	−𝑙𝑙*&𝑠𝑠$$" 	
𝑐𝑐$$" −𝑠𝑠$$" 0 𝑙𝑙*&𝑐𝑐$$"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟑𝟑𝟎𝟎 = *

𝑐𝑐$!"&$#"&$$" −𝑠𝑠$!"&$#"&$$" 	0 𝑥𝑥!"
𝑠𝑠$!"&$#"&$$" 𝑐𝑐$!"&$#"&$$" 0 𝑦𝑦!"

0	 0	 1	 𝑧𝑧!"
0 0 0 1

	1 

 
 

𝑄𝑄#𝑄𝑄% = 𝑎𝑎#𝑎𝑎%	– 	𝒗𝒗𝟏𝟏 · 	𝒗𝒗𝟐𝟐 +	𝑎𝑎#𝒗𝒗𝟐𝟐 	+ 	𝑎𝑎%𝒗𝒗𝟏𝟏 + 	𝒗𝒗𝟏𝟏	𝒙𝒙	𝒗𝒗𝟐𝟐 
 
 

𝒖𝒖 = -

𝑥𝑥
𝑏𝑏0

𝑦𝑦
𝑏𝑏0

𝑧𝑧
𝑏𝑏0
3 =

𝑥𝑥
||𝒗𝒗|| 𝒊𝒊 +

𝑦𝑦
||𝒗𝒗|| 𝒋𝒋 +

𝑧𝑧
||𝑣𝑣|| 𝒌𝒌 

 
𝑄𝑄 = cos?+

(
@ + 𝒖𝒖	𝑠𝑠𝑠𝑠𝑠𝑠	 ?+

(
@   

 
 

𝑅𝑅(𝑄𝑄)𝒗𝒗 = 𝑄𝑄𝒗𝒗𝑄𝑄F   
 
 

𝑄𝑄%& = cos ?
𝑞𝑞%&
2 @ + 𝒖𝒖𝟏𝟏𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞%&
2 @ 

 
 

𝑄𝑄(& = cos ?
𝑞𝑞(&
2 @ + 𝒖𝒖𝟐𝟐𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞(&
2 @ 

 
 

𝑄𝑄*& = cos ?
𝑞𝑞*&
2 @ + 𝒖𝒖𝟑𝟑𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?

𝑞𝑞*&
2 @ 
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(6)

Then, applying trigonometric identities D-H proce-
dure [16], the generalized homogeneous transformation 
matrix results as

𝑥𝑥!" = 𝑙𝑙#" s$!" + 𝑙𝑙%"s$!"&$#" + 𝑙𝑙!"c$!"&$#"&$$" 
 
 

𝑦𝑦!" = −𝑙𝑙#" c$!" − 𝑙𝑙%"c$!"&$#" + 𝑙𝑙!"s$!"&$#"&$$" 
 
 

𝑧𝑧!" = β#" + β$" + β!" = 0 
 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟏𝟏𝟎𝟎 = #

𝑠𝑠$!" 𝑐𝑐$!" 	0 	𝑙𝑙%&𝑠𝑠$!" 	
−𝑐𝑐$!" 𝑠𝑠$!" 0 −𝑙𝑙%&𝑐𝑐$!"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟏𝟏𝟎𝟎
𝟐𝟐𝟎𝟎 = #

𝑐𝑐$#" −𝑠𝑠$#" 	0 	𝑙𝑙(&𝑐𝑐$#" 	
𝑠𝑠$#" 𝑐𝑐$#" 0 𝑙𝑙(&𝑠𝑠$#"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟐𝟐𝟎𝟎
𝟑𝟑𝟎𝟎 = #

−𝑠𝑠$$" −𝑐𝑐$$" 	0 	−𝑙𝑙*&𝑠𝑠$$" 	
𝑐𝑐$$" −𝑠𝑠$$" 0 𝑙𝑙*&𝑐𝑐$$"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟑𝟑𝟎𝟎 = *

𝑐𝑐$!"&$#"&$$" −𝑠𝑠$!"&$#"&$$" 	0 𝑥𝑥!"
𝑠𝑠$!"&$#"&$$" 𝑐𝑐$!"&$#"&$$" 0 𝑦𝑦!"

0	 0	 1	 𝑧𝑧!"
0 0 0 1

	1 
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(7)

where x3R, y3R and z3R are equivalents to the Equation 
(1), Equation (2) and Equation (3) of the geometric 
method. Therefore, the end position of the point OΣ3R 
(x3R, y3R, z3R) is the same using the geometric method 
and the D-H convention. 

Quaternions-based forward kinematics
The four-dimensional space H is formed by the real 

axis and three orthogonal axis, spanned by the princi-
pal imaginaries vectors i= (1,0,0), j=(0,1,0) and k= 
(0,0,1), which obey Hamilton rules [28]: i2= j2= k2= ijk= 
-1. Where multiplication of these imaginaries resem-
bles cross product, such that ij= k, jk= i, ki= j, ji= -k, kj= 
-i, ik= -j.

A quaternion Q= r + xi + y j + z k consists of a real part 
r and a pure part v= xi + yj + zk [13]. Let Q1= a1 + v1 and 
Q2= a2 + v2 two quaternions, then, their product is cal-
culated using the dot product and the cross product as:

𝑥𝑥!" = 𝑙𝑙#" s$!" + 𝑙𝑙%"s$!"&$#" + 𝑙𝑙!"c$!"&$#"&$$" 
 
 

𝑦𝑦!" = −𝑙𝑙#" c$!" − 𝑙𝑙%"c$!"&$#" + 𝑙𝑙!"s$!"&$#"&$$" 
 
 

𝑧𝑧!" = β#" + β$" + β!" = 0 
 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟏𝟏𝟎𝟎 = #

𝑠𝑠$!" 𝑐𝑐$!" 	0 	𝑙𝑙%&𝑠𝑠$!" 	
−𝑐𝑐$!" 𝑠𝑠$!" 0 −𝑙𝑙%&𝑐𝑐$!"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟏𝟏𝟎𝟎
𝟐𝟐𝟎𝟎 = #

𝑐𝑐$#" −𝑠𝑠$#" 	0 	𝑙𝑙(&𝑐𝑐$#" 	
𝑠𝑠$#" 𝑐𝑐$#" 0 𝑙𝑙(&𝑠𝑠$#"
0	 0	 1	 0	
0 0 0 1

	+ 
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𝟑𝟑𝟎𝟎 = #
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𝑐𝑐$$" −𝑠𝑠$$" 0 𝑙𝑙*&𝑐𝑐$$"
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	+ 
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	1 
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(
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𝑄𝑄(& = cos ?
𝑞𝑞(&
2 @ + 𝒖𝒖𝟐𝟐𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?
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(8)

 The quaternion Q= a+v also decomposes into a+bu, 
which resembles a complex number, where the imagi-
nary u is a unit-three vector

𝑥𝑥!" = 𝑙𝑙#" s$!" + 𝑙𝑙%"s$!"&$#" + 𝑙𝑙!"c$!"&$#"&$$" 
 
 

𝑦𝑦!" = −𝑙𝑙#" c$!" − 𝑙𝑙%"c$!"&$#" + 𝑙𝑙!"s$!"&$#"&$$" 
 
 

𝑧𝑧!" = β#" + β$" + β!" = 0 
 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟏𝟏𝟎𝟎 = #

𝑠𝑠$!" 𝑐𝑐$!" 	0 	𝑙𝑙%&𝑠𝑠$!" 	
−𝑐𝑐$!" 𝑠𝑠$!" 0 −𝑙𝑙%&𝑐𝑐$!"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟏𝟏𝟎𝟎
𝟐𝟐𝟎𝟎 = #

𝑐𝑐$#" −𝑠𝑠$#" 	0 	𝑙𝑙(&𝑐𝑐$#" 	
𝑠𝑠$#" 𝑐𝑐$#" 0 𝑙𝑙(&𝑠𝑠$#"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟐𝟐𝟎𝟎
𝟑𝟑𝟎𝟎 = #

−𝑠𝑠$$" −𝑐𝑐$$" 	0 	−𝑙𝑙*&𝑠𝑠$$" 	
𝑐𝑐$$" −𝑠𝑠$$" 0 𝑙𝑙*&𝑐𝑐$$"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟑𝟑𝟎𝟎 = *

𝑐𝑐$!"&$#"&$$" −𝑠𝑠$!"&$#"&$$" 	0 𝑥𝑥!"
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𝑄𝑄(& = cos ?
𝑞𝑞(&
2 @ + 𝒖𝒖𝟐𝟐𝟎𝟎	𝑠𝑠𝑠𝑠𝑠𝑠	 ?
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(9)

Thus, |(|u|)|= 1 and x, y, z are the cartesian coordinates 
of v. Let Q= a + bu, so its conjugate is = a - bu [29].

On the other hand, a rotation of θ around axis u is 
represented as the unit quaternion.

𝑥𝑥!" = 𝑙𝑙#" s$!" + 𝑙𝑙%"s$!"&$#" + 𝑙𝑙!"c$!"&$#"&$$" 
 
 

𝑦𝑦!" = −𝑙𝑙#" c$!" − 𝑙𝑙%"c$!"&$#" + 𝑙𝑙!"s$!"&$#"&$$" 
 
 

𝑧𝑧!" = β#" + β$" + β!" = 0 
 
 

𝑯𝑯𝟎𝟎𝟎𝟎
𝟏𝟏𝟎𝟎 = #

𝑠𝑠$!" 𝑐𝑐$!" 	0 	𝑙𝑙%&𝑠𝑠$!" 	
−𝑐𝑐$!" 𝑠𝑠$!" 0 −𝑙𝑙%&𝑐𝑐$!"
0	 0	 1	 0	
0 0 0 1

	+ 

 
 

𝑯𝑯𝟏𝟏𝟎𝟎
𝟐𝟐𝟎𝟎 = #

𝑐𝑐$#" −𝑠𝑠$#" 	0 	𝑙𝑙(&𝑐𝑐$#" 	
𝑠𝑠$#" 𝑐𝑐$#" 0 𝑙𝑙(&𝑠𝑠$#"
0	 0	 1	 0	
0 0 0 1

	+ 
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𝟑𝟑𝟎𝟎 = #
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0	 0	 1	 0	
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	+ 
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where = cos (    ) - u sin (    ) is the conjugate. 

Then, if we represent the HAK system (Figure 2), by 
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Where u1R= [0, 0, 0, k] is a unit vector, q1R is the rota-
tion angle around the z0R axis and OΣ is the rotation 
angle around the z0R axis and OΣ1R= [0, 0, -l1R j, 0] is the 
representation of the home position of the frame Σ1R 
origin. Then, the rotated final from OΣ1R using Equation 
(11) is OΣ1Rf= Q1ROΣ1R .
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FIGURE 3. Proposed kinematic chain representing the frames that define the movements of the
joined system for gait modeling. a) Lower right limb, b) Correspondence of the frames and reference

points in the female musculoskeletal model [27] and c) Lower left limb.
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the quaternions representing rotations with angles q2R 
and q3R around z1R and z2R axes, respectively. u2R= [0, 0, 
0, k], u3R= [0, i, 0, 0], OΣ2R= [0, 0, l2R j, 0] and OΣ3R= [0, l3R 

i, 0, 0], then, in a recursive form the final position dar-
ing the gait cycle of the right could be written as

(15)

For example, for a specific case where q1R= q2R= q3R= 0, 
l1R= l2R= l3R= 1 and β1R= β2R= β3R= 0 we get OΣ3Rf= [0, 2, 
-2j, 1], which corresponds to the same result though 
geometric method and D-H convention.

Pelvis – hip – knee – ankle system (PHAK) 
In this section, to improve the kinematic gait analy-

sis, in addition to the movements of flexion-extension 
of hip and knee, as well as dorsiflexion and plantar-
flexion of ankle [11] [12] [20] [26], rotational and tilting 
movements of the pelvis are added to the previous 
model (Figure 2). The two lower limbs are simultane-
ously considered as open serial kinematic chains and 
the reference frames are reassigned as shown in 
(Figure 3). For this reason, it is possible to calculate the 
forward kinematics of position of the joints and big 
toes of both lower limbs using the previously described 
methods. However, geometric methods and classical 
D-H convention become more complex as degrees of 
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?.*
/* = A

B0!" C0!" 	0 	(#"B0!" 	
−C0!" B0!" 0 −(#"C0!"
0	 0	 1	 0	
0 0 0 1

	D  (4) 

?/*
)* = A

C0#" −B0#" 	0 	($"C0#" 	
B0#" C0#" 0 ($"B0#"
0	 0	 1	 0	
0 0 0 1

	D  

(5) 

?)*
1* = A

−B0$" −C0$" 	0 	−(%"B0$" 	
C0$" −B0$" 0 (%"C0$"
0	 0	 1	 0	
0 0 0 1

	D  

(6) 

Then, applying trigonometric identities D-H procedure 265 
[16], the generalized homogeneous transformation 266 
matrix results as  267 

1'(
)( = 2

/$!"&$#"&$$" −0$!"&$#"&$$" 	0 $!"
0$!"&$#"&$$" /$!"&$#"&$$" 0 &!"

0	 0	 1	 '!"
0 0 0 1

	6  (7) 

where %%" !%" and &%" are equivalents to the Equation 268 
(1), Equation	(2) and Equation (3) of the geometric 269 
method. Therefore, the end position of the point 270 
OΣ%"(%%" , !%" , &%") is the same using the geometric 271 
method and the D-H convention.  272 

Quaternions-based forward kinematics 273 

The four-dimensional space  G is formed by the real 274 
axis and three orthogonal axis, spanned by the principal 275 
imaginaries vectors H = 	 (1,0,0), I = (0,1,0) and         276 
J =	 (0,0,1), which obey Hamilton rules [28]: H) = I) =277 
J) = HIJ = −K. Where multiplication of these 278 
imaginaries resembles cross product, such that  HI =279 
J, IJ = H, JH = I, IH = −J, JI = −H, HJ = −I	. 280 

A quaternion *	 = 	L	 + 	%H	 + 	!	I	 + 	&	J consists of a 281 
real part L and a pure part M = %H	 + 	!	I	 + 	&J [13]. Let 282 
*# =		0# + M/		and *$ =		0$ + M) two quaternions, 283 
then, their product is calculated using the dot product and 284 
the cross product as: 285 

7#7% = 8#8%	– 	:* · 	:+ +	8#:+ 	+ 	8%:* + 	:*	<	:+  (8) 

The quaternion * = 0 + M also decomposes into       286 
0 + NO, which resembles a complex number, where the 287 
imaginary O is a unit-three vector 288 

O = P

%
NQ

!
NQ

&
NQ

R =
(
||3|| H +

4
||3|| I +

5
||6||J  

 

(9) 

Thus,  S|O|S = 1 and %, !, &	 are the cartesian 289 
coordinates of M. Let  * = 0 + NO,  so its conjugate is 290 
*U = 0 − NO [29]. 291 

On the other hand, a rotation of 9 around axis O is 292 
represented as the unit quaternion:  293 

* = cos Y7$Z + O	B71	 Y
7
$Z   (10) 

Given a unit quaternion * that represents a rotation, 294 
then, the rotation around an arbitrary pure vector M	5	+% 295 
is 296 

+(*)M = *M*U   (11) 

where *U =	 cos Y7$Z − O	B71	 Y
7
$Z  is the conjugate.   297 

Then, if we represent the HAK system (Figure 2), by 298 
quaternions algebra, from Equation (10) the quaternion 299 
representation of the rotation around the  &!" axis is 300 

*#" = cos Y
.#"
2
Z + O/*	B71	 Y

.#"
2
Z (12) 

Where O/* = [0,0,0, J] is a unit vector, .#" is the 301 
rotation angle around the  &!" axis and                        302 
[6/* =	[0,0,-	(#"I,0] is the representation of the home 303 
position of the frame Σ#" origin. Then, the rotated final 304 
from [6/*  using Equation (11) is [6/*8 =305 
*#"[6/**#"UUUUU.  306 

Let us 307 

*$" = cos Y
0#"
$ Z + O)*	B71	 Y

0#"
$ Z  (13) 

*%" = cos Y
0$"
$ Z + O1*	B71	 Y

0$"
$ Z  (14) 

the quaternions representing rotations with angles .$"  308 
and .%" around &#" and &$" axes, respectively.           309 
O)* = [0,0,0, J], O1* = [0, H, 0,0], [6)* = [0,0, 310 
($"I, 0] and [61* = [0, (%"H, 0,0], then,  in a recursive 311 
form    the final position daring the gait cycle of the right  312 
could be written as  313 

[61*8 =		*#"	[6/*	*#"UUUUU 	+

	*#"	*$"	[6)*	*$"UUUUU	*#"UUUUU +
*#"	*$"	*%"	[61*	*%"UUUUU	*$"UUUUU	*#"UUUUU   

(15) 

For example, for a specific case where  .#" 	= .$" 	=314 
.%" 	= 0,  (#" = ($" = (%" = 1 and β#" = β$" = β%" =315 
0 we get \61*8 = [0,0,−2I, 1],	 which corresponds to 316 
the same result through geometric method and D-H 317 
convention. 318 
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freedom increase [16] as in this model. While the qua-
ternion-based method presented as following, rep-
resents a flexible and precise tool for this approach.

In system PHAK (Figure 3), the model features the 
lower limbs as 7 rigid-body segments 1) pelvis, 2) right 
femur, 3) left femur, 4) right tibia, 5) left tibia, 6) right 
foot and 7) left foot. The relative motion of these seg-
ments is defined successively by quaternions algebra. 
The anthropometry is adopted from [20]. The cartesian 
frames Σ0, Σ1, Σ2, Σ3 and Σ4 correspond to the references 
placed on pelvis, hip, knee, ankle and big toe, respec-
tively, in both lower limbs. Let us define the origin of 
the cartesian frames as a quaternion as OΣ1R= [0, 0, 0, 
l1R k], OΣ2R= [0, 0, -l2R j, 0], OΣ3R= [0, 0, -l3R j, 0], OΣ4R= [0, 
l4R i, 0, 0]. The quaternions Q1R, Q2R, Q3R, Q4R and Q5R 
with u1R= [0, 0, j, 0], u2R=[0, i, 0, 0], u3R= u4R= u5R= [0, 0, 
0, k], is the quaternions representation of the rotation 
and tilting movements of the pelvis, flexo-extension 
of hip and ankle, as well as dorsiflexion and plantar-
flexion of ankle, respectively. Finally, l1R, l2R, l3R and l4R, 
are related with the lengths of pelvis, femur, tibia and 
foot. Thus, recursively the position of the right big toe 
is calculated from Equation (11) as

(16)
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Similarly, the position of the left big toe could be 361 
calculated and expressed as: 362 
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Once the forward kinematics of the position of both 363 
lower limbs has been obtained, a simulation and 364 
visualization corresponding to the HAK (Figure 2) and 365 
PHAK (Figure 3) systems are carried out for the types of 366 
gait: i) normal, ii) mild crouch and iii) severe crouch. The 367 
computational implementation on Matlab® of the 368 
quaternions method to calculate the forward kinematics 369 
of position of the PHAK system is represented in the 370 
following flow chart (Figure 4). In the same way. the 371 
algorithm is applicable for the HAK system. 372 

 373 

Figure 4. Flowchart for the computational 374 
implementation for the forward kinematics of position 375 
using quaternions algebra. 376 

Where, the input data .1-, .1>, .2-, .2>, .3-, .3>, .4-, 377 

.4>, .5-, .5>are the values of the angles for rotation and 378 
tilt of the pelvis, flexo-extension of hip and knee, as well 379 
as, dorsiflexion and plantarflexion of the ankle, for both 380 
extremities, respectively. ] is the number of samples per 381 
gait cycle. These values were adopted from de 382 
gait2392_simbody model [24] for each gait (Table 4). 383 
This model is a three-dimensional, 23-degree-of-384 
freedom computer model of the human musculoskeletal 385 
system. While, (1-, (1>, (2-, (2>, (3-, (3>, (4-, (4>, pelvis, 386 
femur, tibia and foot anthropometry was adopted from 387 
[20]. The proposed method in this work allows a flexible 388 
and transparent coupling of the joint angles and 389 
anthropometry to determine the forward kinematics of 390 
position.	O/*, O/C, O)*, O)C, O1*, O1C, O:*, O:C, O<*, 391 

O<C were proposed according to the configuration of the 392 
model in (Figure 3). 393 

Next, iteratively for all the sampled of the gait, based 394 
on Equation (10), the quaternions that represent each 395 
corresponding movement are calculated. And 396 
sequentially from Equation (11), the positions of each 397 
joint reference are calculated. Finally, for each iteration 398 
a graphic representation of the pattern of each type of gait 399 
in that corresponding sample can be made. The data of 400 
the cartesian positions of each joint are stored to be 401 
compared later. 402 

Table 3. Movement models used from 403 
gait2392_simbody.osim [24] . 404 

Gait type  Movement model 

Normal normal  

Mild crouch (MC)  crouch1 

Severe crouch (SC) crouch4 

 405 

RESULTS AND DISCUSSION 406 

In this section, the most relevant results of this work 407 
are presented and described. Then, in order to present the 408 
movement pattern of the gait model [24] (Figure 4a)  and 409 
the one proposed in this work (Figure 4b),   visualizations 410 
in the sagittal plane of 6 states (0, 20, 40, 60, 80, and 100) 411 
%  of a normal gait cycle for both methods are shown. 412 
The values of the angles and anthropometry used are 413 
those described in the previous section. To highlight part 414 
of the contribution of this work, we include the 415 
visualization of the same states and conditions for the 416 

Similarly, the position of the left big toe could be cal-
culated and expressed as:

(17)
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Once the forward kinematics of the position of both 
lower limbs has been obtained, a simulation and visu-
alization corresponding to the HAK (Figure 2) and 
PHAK (Figure 3) systems are carried out for the types 
of gait: i) normal, ii) mild crouch and iii) severe crouch. 

The computational implementation on Matlab® of the 
quaternions method to calculate the forward kinemat-
ics of position of the PHAK system is represented in 
the following flow chart (Figure 4). In the same way. 
the algorithm is applicable for the HAK system.

FIGURE 4. Flowchart for the computational
implementation for the forward kinematics of

position using quaternions algebra.

Where, the input data q1R, q1l, q2R, q2L, q3R, q3L, q4R, q4l, 
q5R, q5l are the values of the angles for rotation and tilt 
of the pelvis, flexo-extension of hip and knee, as well 
as, dorsiflexion and plantarflexion of the ankle, for 
both extremities, respectively. N is the number of sam-
ples per gait cycle. These values were adopted from de 
gait2392_simbody model [24] for each gait (Table 4). 
This model is a three-dimensional, 23-degree-of-free-
dom computer model of the human musculoskeletal 
system. While, l1R, l1L, l2R, l2L, l3R, l3L, l4R, l4L, pelvis, 
femur, tibia and foot anthropometry was adopted 
from [20]. The proposed method in this work allows a 
flexible and transparent coupling of the joint angles 
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FIGURE 5. View in the sagittal plane of 6 states of the kinematics of the lower limbs in (0, 20, 40, 60, 80 y 100) %
of the normal gait cycle. a) Biomechanical simulation platform [24] and b) Quaternions-algebra based platform.

a)

b)

and anthropometry to determine the forward kine-
matics of position. u1R, u1L, u2R, u2L, u3R, u3L, u4R, u4L, u5R, 
u5L were proposed according to the configuration of 
the model in (Figure 3).

Next, iteratively for all the sampled of the gait, based 
on Equation (10), the quaternions that represent each 
corresponding movement are calculated. And sequen-
tially from Equation (11), the positions of each joint 
reference are calculated.

Finally, for each iteration a graphic representation of 
the pattern of each type of gait in that corresponding 
sample can be made. The data of the cartesian posi-
tions of each joint are stored to be compared later.

RESULTS AND DISCUSSION
In this section, the most relevant results of this work 

are presented and described. Then, in order to pres-
ent the movement pattern of the gait model [24] 

TABLE 3. Movement models used from
gait2392_simbody.osim [24] .

Tabla	1	
	

Orthonormal 
cartesian frames 

Joint references of 
The right lower limb 

𝑂𝑂Σ!"(𝑥𝑥!", 𝑦𝑦!", 𝑧𝑧!") Hip 

𝑂𝑂Σ#"(𝑥𝑥#", 𝑦𝑦#", 𝑧𝑧#") Knee 

𝑂𝑂Σ$"(𝑥𝑥$", 𝑦𝑦$", 𝑧𝑧$") Ankle 

OΣ%"(𝑥𝑥%", 𝑦𝑦%", 𝑧𝑧%") Big toe 

	
	

Tabla	2	
	

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒊𝒊 𝜽𝜽𝒊𝒊 𝒅𝒅𝒊𝒊   (𝜷𝜷𝒊𝒊) 𝒍𝒍𝒊𝒊 𝜶𝜶𝒊𝒊 

1 𝑞𝑞#" −
𝜋𝜋
2

 β#" 𝑙𝑙#" 0 

2 𝑞𝑞$" β$" 𝑙𝑙$" 0 

3 𝑞𝑞%" +
𝜋𝜋
2

 β%" 𝑙𝑙%" 0 

	
	

Tabla	3	
	

Gait type  Movement model 

Normal (N) normal  

Mild crouch (MC)  crouch1 

Severe crouch (SC) crouch4 

	

(Figure 4a) and the one proposed in this work (Figure 
4b), visualizations in the sagittal plane of 6 states (0, 
20, 40, 60, 80, and 100) % of a normal gait cycle for 
both methods are shown. The values of the angles 
and anthropometry used are those described in the 
previous section. To highlight part of the contribu-
tion of this work, we include the visualization of the 
same states and conditions for the same gait for the 
frontal plane (Figure 5) and the superior transverse 
plane (Figure 6), in which it is possible to appreciate 
rotating and tilting movements of the pelvis, respec-
tively. These movements have been included in this 
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FIGURE 6. View in the frontal plane of 6 states of the kinematics of the lower limbs in (0,20,40,60,80 y 100) %
of the normal gait cycle. a) Biomechanical simulation platform [24] and b) Quaternions-algebra based platform.

a)

b)

work unlike others that have not, which substantially 
improves the precision in the calculation of the kine-
matics of the lower limbs. 

For the computational implementation in our 
approach the base frame Σ0 is considered in an abso-
lute way, that is, the translational movement of the 
pelvis has not been considered. The blue vertical line 
in (Figures 5, 6 and 7) indicates the end of the stance 
phase (60% of the cycle) and the beginning of the 
swing phase (40% of the cycle).

In the 3 figures, the gait pattern generated by the 
mathematical quaternion-based model is similar to 
the OpenSim® biomechanical model [24], which is very 
important, since a more practical and less complex 
implementation can be done with the method based 
on quaternions than with the D-H convention. 
Furthermore, as it can be seen, it is possible to approx-
imate the gait pattern of a 23 DoF model [24], with an 8 

DoF model like the one proposed in this work, which 
implies the reduction of orthonormal frames and with 
it, the instrumentation required for the measurement 
joint variables are also simplified. In addition to the 
above, it is possible to model the lower extremities as 
an analytically open serial chain with quaternion alge-
bra and simplify the fact of modeling each joint inde-
pendently.

The most widely analyzed joints in the literature are 
the hip, knee and ankle. In crouched gaits, dorsiflex-
ion and plantarflexion of the ankle are pronounced, on 
average more than 15° from normal gait. The crouch 
pattern is generally a problem presented by people 
with cerebral palsy [30] [31], as well as spastic diplegia 
and quadriplegia [32] [33]. Disability as a result of a cere-
brovascular accident or other types of accident has an 
evolution that dominates from the stroke phase, 
immediately after the accident, to a phase of low to 
severe spasticity, due to the inattention of the patient 
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FIGURE 7. View in the transverse plane of 6 states of the kinematics of the lower limbs in (0,20,40,60,80 y 100) %
of the normal gait cycle. a) Biomechanical simulation platform [24] and b) Quaternions-algebra based platform.

a)

b)

in tasks of rehabilitation. The diseases are the same, 
the level of progress that makes the disease critical, 
changes over time to worsen or improve. Therefore, 
the analysis of the variation of the angular amplitude, 
maximum and minimum points of occurrence and 
shape factor of the angles of the joints is extremely 
important to determine the evolution of a patient in 
conditions of disability.

In addition to the joint and geometric parameters of 
the lower limbs, the calculation of the forward kine-
matics of position of the hip, knee, ankle and big toe of 
the right (Figure 8) and left (Figure 9) lower limbs is 
very important for gait analysis.

In (Figure 8) and (Figure 9), the positions of the refer-
ence frames of the hip, knee, ankle and big toe in the 
sagittal plane for each limb, respectively, provide 
information on the behavior in the operational space 
of the gait. It is possible through these graphs to deter-

mine the differences between a normal gait and patho-
logical gaits in relation to the range of motion and 
shape factor. Which is very useful in the clinical diag-
nosis and in the treatments related to gait problems.

In (Figure 8a), regarding the positions of the hip 
frames, it is observed that for a normal gait, both the 
right and the left move around the origin (z axis), 
while in the abnormal gaits the centers of position 
shift .02 m, and 08m for mild crouch and severe 
crouch, respectively. In addition to highlighting the 
shape pattern, which makes evident a flexion in the 
hip for abnormal gaits. The joints have the same shape 
pattern for the 3 types of gait and only a decrease in 
movement of approximately 40% is observed. 
However, the same does not occur for the left limb, 
since the movement factor is far between normal gait 
and abnormal gait, in which the severity of gait 
increases, thereby decreasing the movement in the 
operational space.
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Conventional methods establish a gait analysis from 
the comparison of the gait pattern associated with each 
bone structure in its corresponding anatomical plane 
with the performance of the studied subject. This activ-
ity represents exhaustive work to establish a diagnosis, 
particularly when the performance of one bone struc-
ture depends on some other (in the same lower extrem-
ity or the other). However, analyzing performance glob-
ally significantly reduces analysis time, particularly 
when running in operational space or gait space; thus, 
being possible to evaluate classical metrics, and other 
proposals that better describe the anomaly.

The position of the joints is useful to improve the ana-
tomical models or attachments that help to walk. 
Likewise, obtaining the position by forward kinemat-
ics, the cadence can be obtained from the calculation 
of the angular velocity, which cannot be obtained 
from the joint space. Also, through forward kinematics 

it is possible to obtain the distance between the joints 
during the gait cycle and from there determine the 
dependency that exists between them. Therefore, 
using metrics such as these, through these compara-
tive metrics, it is possible to contribute to diagnosis 
and decision-making. 

FIGURE 8. a) Hip, b) Knee, c) Ankle and d) Big toe,
right positions in the sagittal plane during gaits:

normal (N), mild crouch (MC) and severe crouch (SC),
using the quaternion-based approach.
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FIGURE 9. a) Hip, b) Knee, c) Ankle and d) Big toe,
left positions in the sagittal plane during gaits:

normal (N), mild crouch (MC) and severe crouch (SC),
using the quaternion-based approach.
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The use of specific metrics to develop the biomechani-
cal analysis of gait depends on the objective of interest. 
Generally, these metrics are used to determine age, gen-
der, pathologies [34] or physiotherapeutic progress [35].

The most common metrics used in gait analysis are 
speed, cadence, stride length, toe angle, number of 
daily steps [23]. There are some less used ones based on 
the calculation of the area of the silhouette to deter-
mine gender [36]. This represents an area of opportu-
nity to study and propose new metrics evaluated in the 
operational space. While the Euclidean distance is the 
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usual norm used in cartesian space, for human gait 
analysis, it has not been reported as a useful metric. 
The Euclidean distance between orthonormal frames 
of the joint references (Figure 3) of lower limbs is 
shown in (Figure 10) and is calculated as
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for the distance between the knees, while
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and
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are used to calculate the euclidian distance between 
ankles and big toes, respectively.

FIGURE 10. Euclidean distance between a) knees,
b) ankles, and c) big toes of the lower limbs during

normal (N), mild crouch (MC) and severe crouch gaits. 
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The use of the metric of the Euclidean distance in the 
cartesian space of the gait allows to establish a distance 
pattern to determine the normal and abnormal param-
eters during the evaluation and it is related to the range 
of motion of each joint. The distance between the right 
and left hip references due to the human model used is 
kept constant and for this reason is not presented in 
(Figure 10). The distance between knees references 
during normal gait is greater for each gait sample than 
mild and severe crouch gaits, which implies that the 
global performance in abnormal gaits reflects a limita-
tion of movement, which is characteristic of diseases 
such as cerebral palsy or hemiplegia. On the other 
hand, the form factor of the distance measurement of 
normal gait references can be established as the gait 
pattern in cartesian space, so it is clear that in (Figure 
10a) the abnormal gaits do not maintain the same dis-
tance between knees as the pattern. Similar perfor-
mance in measuring the Euclidean distance between 
the ankles and the big toes of both lower limbs. 

CONCLUSIONS
Unlike classical Denavit-Hartenberg and geometric 

methods for calculating the forward kinematics of 
position of a serial kinematic chain, the method based 
on quaternion algebra proposed in this work reduces 
the complexity of kinematic modeling and the compu-
tational cost of numerical calculation when the num-
ber of degrees of freedom of the chain increases. 
Furthermore, through the method introduced, it is 
possible to approximate the gait pattern of the 23 DoF 
human model, through the 8 DoF model used in this 
work, reducing the number of orthonormal frames in 
the modeling and instrumentation required for the 
acquisition of biomechanical data of the gait.

The analysis in the 3 anatomical planes of the 8 DoF 
model allows an evaluation of the performance of the 
lower limb joints during the gait cycle both, inde-
pendently and as a whole. If the movements of the 
joints in a single anatomical plane are evaluated, as for 
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example in the 3 DoF model presented, a local analysis 
is obtained, which does not consider the movements 
in other anatomical planes that limit the comprehen-
sive diagnosis, and there may be loss of an objective 
diagnosis.

Finally, gait analysis in the cartesian space from the 
joint space is useful to assess gait abnormalities of the 
studied subject with respect to the normal gait pat-
tern. The evaluation in the operational space of abnor-
mal gaits, such as mild crouch and severe crouch 
respect to normal gait, shows an anatomical displace-
ment of excessive flexion in the knees and ankles pre-
sented in this type of gait, noted numerically through 
the proposed model. In addition, it is possible to deter-
mine the normal patterns and metrics of these and 
other joints such as the hip, which help diagnose dis-
eases related to the detected abnormalities. The use of 
other metrics in cartesian space, the calculation of 
inverse kinematics, and differential kinematics can 
greatly improve the biomechanical gait analysis. 
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