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ABSTRACT
The size of the cerebellum in ultrasound volumes of the fetal brain has shown a high correlation with gestational
age, which makes it a valuable feature to detect fetal growth restrictions. Manual annotation of the 3D surface of the
cerebellum in an ultrasound volume is a time consuming task, which needs to be performed by a highly trained expert.
In order to assist the experts in the evaluation of cerebellar dimensions, we developed an automatic scheme for the
segmentation of the 3D surface of the cerebellum in ultrasound volumes, using a spherical harmonics model. In this
work we present our validation results on 10 ultrasound volumes in which we have obtained an adequate accuracy
in the segmentation of the cerebellum (mean Dice coefficient of 0.689). The method reported shows potential to
effectively assist the experts in the assessment of fetal growth in ultrasound volumes.
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RESUMEN
El tamaño del cerebelo, en un volumen de ultrasonido del cerebro fetal, ha mostrado una alta correlación con la
edad gestacional, lo que hace importante a esta medición para la detección de restricciones del crecimiento del feto.
La anotación manual de la superficie 3D del cerebelo en un volumen de ultrasonido es una tarea demandante, que
debe ser realizada por un experto. Con el propósito de apoyar a los expertos en la evaluación de las dimensiones
del cerebelo fetal, hemos desarrollado un método automático para la segmentación de la superficie 3D del cerebelo
en volúmenes de ultrasonido, utilizando un modelo de harmónicos esféricos (spherical harmonics). En este trabajo
presentamos los resultados de una evaluación del método automático en 10 volúmenes de ultrasonido con los que
hemos obtenido un valor adecuado de exactitud (coeficiente promedio de Dice de 0.689). El método reportado tiene
potencial para asistir de manera efectiva a los expertos en la evaluación del crecimiento fetal, utilizando volúmenes
de ultrasonido.
Palabras clave: segmentación 3D de ultrasonido fetal, cerebelo fetal, modelos estadísticos de formas,
harmónicos esféricos.

INTRODUCTION

Cerebellar volumes obtained by multiplanar,
and the Virtual Organ Computer Aided
Analysis (VOCAL) techniques have shown
a high correlation with gestational age
and might have statistically significant
differences between different ethnic groups
[1]. Cerebellar volumes evaluated by
multiplanar and VOCAL techniques have
shown differences between growth restricted
fetuses and also adequacy for the assessment
of the gestational age [2]. In [3],
and [4] is evaluated the growth of the
cerebellum in normal pregnancy, using the
multiplanar technique. Both techniques
(VOCAL and multiplanar evaluation) are
useful for fetal evaluation of brain structures,
however both have the necessity of manual
delineation by an experienced operator,
which is considered a disadvantage respect
to automated segmentation techniques due
to the low reproducibility and agreement
obtained by manual segmentation techniques.
In order to ease the task for the experts and,
more importantly, to contribute to improved
reproducibility in the measurement of the
cerebellar volume, we have developed two

different schemes for automatic segmentation
of the cerebellum in ultrasound volumes.

Previous work on the automatic
segmentation of fetal brain structures has
been reported in Yaqub et al., [12] were a
random decision forest classifier was trained
to automatically segment: the choroid plexus,
the lateral posterior ventricle cavity, the
cavum septum pellucidi, and the cerebellum
in 3D ultrasound. A mean Dice coefficient of
0.63 was reported for the segmentation of the
cerebellum.

In Gutierrez et al., [5] was reported
the development of a point distribution
model (PDM) of the cerebellum which is
automatically adjusted to an ultrasound
volume. The model is able to automatically
segment the 3D surface of the cerebellum
with good accuracy (mean Dice coefficient
of 0.8) with a mean processing time of 50
s. Although good results have been achieved
with the PDM, in this work we explore the use
of a spherical harmonic (SPHARM) model
of the cerebellum for automatic segmentation
of the structure in ultrasound volumes.
SPHARMs have methodological advantages
for the construction of statistical deformable
models of 3D shapes: There is no need
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for extensive annotation of landmark points;
accurate shape modeling is achieved through
principal components analysis of a set of
normalized 3D shape examples. In the rest
of this work is reported the development
of our SPHARM of the cerebellum and its
use for the automatic segmentation of the
structure in ultrasound volumes. In section 2
we report the construction of the SPHARM
of the cerebellum trained from a set of 9
annotated ultrasound volumes. In section 3
we describe the method used to automatically
adjust the SPHARM model to an ultrasound
volume. In section 4 are reported the results
from automatic adjustment of the SPHARM
of the cerebellum to a set of 10 different non-
training ultrasound volumes, using the leave-
one-out method. In section 5 we present
the discussion and conclusions of the work
reported.

SPHARM MODEL OF THE
CEREBELLUM

Our spherical harmonics (SPHARM) model
of the cerebellum was trained with 9
cerebellum shapes annotated by an expert in
the corresponding ultrasound volumes. Each
shape was discretized as shown in Fig. 1.

The corresponding triangular mesh was
generated for each shape using marching
cubes [6]. An example of a mesh is shown
in Fig.2.

In order to build the SPHARM model,
each mesh of the training set is modeled with
spherical harmonic functions as follows [7]:
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2 SPHARM MODEL OF THE CEREBELLUM 

 
Our spherical harmonics (SPHARM) model of the cerebellum was trained with 9 cerebellum 

shapes annotated by an expert in the corresponding ultrasound volumes. Each shape was discretized as 
shown in Fig. 1.  

 
 
 

Fig. 1. Discretized cerebellum example 
 
The corresponding triangular mesh was generated for each shape using marching cubes [6]. An 

example of a mesh is shown in Fig.2. 
 
 
 

Figure 1. Discretized cerebellum example.
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Fig.2. Triangular mesh of a cerebellum example 
 
 
In order to build the SPHARM model, each mesh of the training set is modeled with spherical 

harmonic functions as follows [7]: 
 
 
Spherical harmonic functions of order $m$ and degree $l$: $Y_l^m$, $-l\le m \le l$ are defined in 

$\theta \in [0,\pi]$,   $\varphi\in [0,2\pi )$ as: 
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where:  $w$ is  $\cos(\theta )$ 

 
To define a surface three SPHARM functions are used, one for each coordinate of the points in the 
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where the coefficients  are 3D vectors corresponding to the 3 coordinate functions in (3): 
 
 

  

Figure 2. Triangular mesh of a cerebellum example.

Spherical harmonic functions of order m
and degree l: Y m

l , −l ≤ m ≤ l are defined in
θ ∈ [0, π], ϕ ∈ [0, 2π) as:

Y m
l (θ, ϕ) =

√√√√2l + 1
4π

(l −m)!
(l +m)!)P

m
l (cos(θ))eimϕ

(1)

where: Pm
l is the associated Legendre

polynomial:

Pm
l (w) = (−1)m

2ll! (1− w2)m
2
dm+1

dwm+1 (w2 − 1)l

(2)

where: w is cos(θ).
To define a surface three SPHARM

functions are used, one for each coordinate
of the points in the surface:

v(θ, ϕ) = (x(θ, ϕ), y(θ, ϕ), z(θ, ϕ))T (3)

The surface is then described by the vector-
valued function:

v(θ, ϕ) =
Lmax∑
l=0

l∑
m=−l

cml Y
m
l (θ, ϕ) (4)

where the coefficients are 3D vectors
corresponding to the 3 coordinate functions
in (3):

cml = (clxm, clym, clzm)T (5)

The coefficients are obtained using a least
squares adjustment to a given shape mesh,
as described in [7].
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The coefficients are obtained using a least squares adjustment to a given shape mesh, as described in [7].  
 
 
Using its decomposition in spherical harmonics we can model the 3D surface corresponding to 

each cerebellum volume in the training set. In Fig. 3 is illustrated an SPHARM model of one cerebellum, 
we can observe how shape details increase with the degree  ($L_{\max}$) of the SPHARM.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. SPHARM of the cerebellum for an increasing degree ($L_{\max}$): A) $L_{\max}$ =1; B) 
$L_{\max}$ = 7; C) $L_{\max}$ =15. 

 
 
Once we have a set of SPHARM coefficients for each shape of the cerebellum training set, a 

principal component analysis (PCA) of the shape parameters is performed through registration of all 
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Figure 3. SPHARM of the cerebellum for an increasing degree (Lmax): A) Lmax =1; B) Lmax = 7; C) Lmax

=15.

Using its decomposition in spherical
harmonics we can model the 3D surface
corresponding to each cerebellum volume in
the training set. In Fig. 3 is illustrated an
SPHARM model of one cerebellum, we can
observe how shape details increase with the
degree (Lmax) of the SPHARM.

Once we have a set of SPHARM
coefficients for each shape of the cerebellum
training set, a principal component analysis
(PCA) of the shape parameters is performed
through registration of all SPHARM models,
using a few corresponding landmark points on
each shape [7], for the cerebellum we used 6
landmark points. The Iterative Closest Point
method [11] is used to register the shapes in
Euclidean space, followed by registration in
parameter space through minimization of the

Root Mean Square Distance (RMSD) [7]:

RMSD =

√√√√1
4π

Lmax∑
L=0

l∑
m=−1

‖c1− c2‖2 (6)

where: c1 and c2 are two SPHARM
parameterizations to be registered.

Principal Component Analysis is
performed on the parameters (ci, eq.5) of all
the examples in the registered training set,
to calculate the mean shape and the main
modes of shape variation. From which it is
possible to generate new shapes of the class
of the training set (i.e. cerebellums) using
Eq. 7.

Sα = Sµ +
M∑
i=1

αiSi (7)

where: Sµ is the mean shape.
Si, are the principal component vectors
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of the training set and αi are the shape
adjustment parameters, with each αi within
the range:

3
√
λi < αi < 3

√
λi

λi is the corresponding eigenvalue of each
principal component Si.

In this work we used the Matlab
toolbox SPHARM-MAT [7] to construct the
SPHARM model of the cerebellum. The

toolbox generates the parameterizations of
each shape on a training set, performs the
registration and calculates the mean shape
and the main modes of variation (principal
components of the covariance matrix). In
Fig. 4 is shown our SPHARM model of the
cerebellum.

Our SPHARM model was used to
automatically segment the surface of the
cerebellum in fetal ultrasound volumes, as
described in the following section.

 6 

 
 
 
 
 
 
Fig. 4. SPHARM based deformable model of the cerebellum. Shape variations are shown for the 3 main 

modes within the range $\pm 3 \sqrt{\lambda_i}$ 
 
 
Our SPHARM model was used to automatically segment the surface of the cerebellum in fetal ultrasound 
volumes, as described in the following section. 
 
 
 
 
3  AUTOMATIC ADJUSTMENT OF THE SPHARM MODEL TO THE CEREBELLUM IN AN 
ULTRASOUND VOLUME 

1st P.C.  

2nd P.C. 

3rd P.C. 

Figure 4. SPHARM based deformable model of the cerebellum. Shape variations are shown for the 3 main
modes within the range ±3

√
λi.
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AUTOMATIC ADJUSTMENT OF
THE SPHARM MODEL TO THE

CEREBELLUM IN AN
ULTRASOUND VOLUME

We used the method reported by Ahmadi et
al [8] for the automatic adjustment of our
SPHARM model to the fetal cerebellum in
an ultrasound volume. The method is based
on the optimization of the following local
(gray level) energy function, through gradient
descent.

E(S) =
∫

int S

fidx+
∫

ext S

fedx (8)

where:

fi = (I − ci(x)2), where (9)

ci(x) =
∫
int S Bε(x)I(x)dx∫
int S Bε(x)dx

fe = (I − ce(x)2), where (10)

ce(x) =
∫
ext S Bε(x)I(x)dx∫
ext S Bε(x)dx

Bε is an sphere of radius ε used to calculate
the values ci and ce for each position x of I.
The function E(S) is minimum at the surface
which separates two homogeneous regions
with significantly different mean grey levels.
The gradient of E(S) is given by Eq. 11.

∂

∂αj
E(Sα) = ∂E

∂S

∂S

∂αj
=

∫
S
(fi − fe)N · Sjds

(11)
where: N is surface normal and Sj the vertex-
wise cartesian deformations for the j-th shape
parameter.

Together, these partial derivatives yield
the gradient of E with respect to the shape
vector α, which we denote by ∇αE .The
corresponding discrete equation is:
∫
S
(fi − fe)NSjds ≈

N∑
k=1

[fi − fe]k[N ]k · [Sj]k

(12)

where: k denotes the vertex number and [·]k

denotes the evaluation at vertex k.
Eq. 12 is evaluated for all the vertices of

the mesh to find optimum values of the shape
parameters (αi) - which accurately fit the
cerebellum in an ultrasound volume - through
gradient descent.

TESTS AND RESULTS

We used 10 different ultrasound volumes
acquired in an axial plane using a Voluson
730 Expert from General Electric, with a 4-8
MHz 3D probe. All volumes were acquired
with informed consent of the patients at
the National Institute of Perinatology in
México City. The cerebellum was annotated
on 10 corresponding volumes by an expert
sonographer.

The automatic segmentation of the
cerebellum was evaluated on the training
set using the leave-one-out method. Nine
volumes were used for training the SPHARM
of the cerebellum with validation of
automatic segmentation on the volume left
out. This was repeated 10 times, validating
the automatic segmentation on each of the 10
fetal ultrasound volumes. The Dice Similarity
Coefficient (DSC) [9] was used to measure
the accuracy of the automatic SPHARM
segmentation as compared against manual
expert annotations.

DSC = 2TP
(2TP + FP + FN) (13)

where: TP corresponds to the number of true
cerebellum voxels,

FP corresponds to the number of voxels
wrongly included as cerebellum and

FN corresponds to the number of
cerebellum voxels wrongly left out of the
segmentation.

For each automatic segmentation test,
the SPHARM was initialized with the mean
cerebellum shape and size, located within
the central plane of the cerebellum in an
ultrasound volume, as shown in Fig. 5.
The optimization parameters were: step size
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automatic segmentation on the volume left out. This was repeated 10 times, validating the automatic 
segmentation on each of the 10 fetal ultrasound volumes. The Dice Similarity Coefficient (DSC) [9] was 
used to measure the accuracy of the automatic SPHARM segmentation as compared against manual 
expert annotations. 
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where: TP corresponds to the number of true cerebellum voxels, 
   FP corresponds to the number of voxels wrongly included as cerebellum and  
   FN corresponds to the number of cerebellum voxels wrongly left out of the segmentation. 

 
For each automatic segmentation test, the SPHARM was initialized with the mean cerebellum 

shape and size, located within the central plane of the cerebellum in an ultrasound volume, as shown in 
Fig. 5. The optimization parameters were: step size of 0.05 for gradient descent, sphere radius of 5 voxels 
and 30 iterations. Speckle reduction anisotropic diffusion filtering (SRAD) was applied to all ultrasound 
volumes [10] with 20 iterations and a diffusion coefficient of 0.75. In table 1 are shown the DSC 
coefficients for our 10 validation ultrasound volumes. In Fig. 6 are shown the results of automatic 
segmentation on three crossections of an ultrasound volume. In Fig. 7 is shown an example of the 
automatic 3D segmentation of the cerebellum. 

 
 
 
  
 

 

 
 

Fig. 5. SPHARM vertices initialization 
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Figure 5. SPHARM vertices initialization.
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Fig. 6 Automatic segmentation results, shown on the SRAD filtered images:  Expert annotations 

are shown in red;  automatic annotations are shown in yellow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Automatic segmentation results, shown
on the SRAD filtered images: Expert annotations
are shown in red; automatic annotations are shown
in yellow.

of 0.05 for gradient descent, sphere radius of
5 voxels and 30 iterations. Speckle reduction
anisotropic diffusion filtering (SRAD) was
applied to all ultrasound volumes [10] with 20
iterations and a diffusion coefficient of 0.75.
In table 1 are shown the DSC coefficients
for our 10 validation ultrasound volumes. In
Fig. 6 are shown the results of automatic

Table 1. DSC of the automatic segmentations of
the cerebellum.

Test volume DSC
1 0.7258
2 0.7186
3 0.7022
4 0.6405
5 0.6942
6 0.7043
7 0.6966
8 0.6552
9 0.6793
10 0.6742

Mean 0.6890
Standard deviation 0.0269
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Figure 7. 3D Automatic segmentation result. 
 

5 DISCUSSION AND CONCLUSIONS 

 
From table 1 it can be observed that our method is able to automatically segment the cerebellum in 

an ultrasound volume with adequate accuracy (mean DSC of  0.689). DSC values starting from 0.7 are 
considered in good agreement with the corresponding expert annotations. In Yaqub et al., [12] a mean 
DSC of 0.63 was reported for the segmentation of the cerebellum. This, lower, segmentation accuracy is 
most likely due to the lack of shape models [12]. 

 
However higher DSC values have been previously obtained with an automatically adjusted point 

distribution model (PDM) of the cerebellum, as reported in [5] where 20 ultrasound volumes were used 
for training and validation using leave-one-out, with a mean DSC for automatic segmentation of 0.8. The 
gains in accuracy are likely to be due to an improved objective function constructed with grey level voxel 
profiles, normal to the deformable model surface. In the following stage of development we will explore 
the use of this objective function with an SPHARM model for automatic segmentation of the cerebellum. 
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Figure 7. 3D Automatic segmentation result.

segmentation on three crossections of an
ultrasound volume. In Fig. 7 is shown an
example of the automatic 3D segmentation
of the cerebellum.

DISCUSSION AND CONCLUSIONS

From table 1 it can be observed that our
method is able to automatically segment the
cerebellum in an ultrasound volume with
adequate accuracy (mean DSC of 0.689).
DSC values starting from 0.7 are considered
in good agreement with the corresponding
expert annotations. In Yaqub et al., [12]
a mean DSC of 0.63 was reported for the
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segmentation of the cerebellum. This, lower,
segmentation accuracy is most likely due to
the lack of shape models [12].

However higher DSC values have been
previously obtained with an automatically
adjusted point distribution model (PDM) of
the cerebellum, as reported in [5] where 20
ultrasound volumes were used for training
and validation using leave-one-out, with a
mean DSC for automatic segmentation of 0.8.
The gains in accuracy are likely to be due to
an improved objective function constructed
with grey level voxel profiles, normal to the
deformable model surface. In the following
stage of development we will explore the use
of this objective function with an SPHARM
model for automatic segmentation of the
cerebellum.
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