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ABSTRACT
Extracting characteristics and information from Auditory Evoked Potentials recordings (AEPs) involves difficulties
due to their very low amplitude, which makes the AEPs easily hidden by artifacts from physiological or external
sources like the EEG/EMG, blinking, and line-noise. To tackle this problem, some authors have used Independent
Component Analysis (ICA) to successfully de-noise brain signals. However, since interest has been mainly focused on
removing artifacts like blinking, not much attention has been paid to the quality of the recovered evoked potential.
This is the AEP case, where literature reports interesting results on the de-noising matter, but without an objective
evaluation of the AEP finally extracted (and the influence of different implementations or configurations of ICA).
Here, to study the performance of three popular ICA algorithms (FastICA, Ext-Infomax, and SOBI) at separating
AEPs from a mixture, a synthetic dataset composed of one Long Latency Auditory Evoked Potential (LLAEP) signal
and the most frequent artifacts was generated. Next, the quality of the independent components (ICs) estimated
by such algorithms was measured by using the AMARI performance index (Am), the signal interference ratio index
(SIR), and the time required to achieve separation. Results indicated that the FastICA implementation, with the
symmetric approach and the power cubic contrast function, is more likely to provide the best and faster separation
of the LLAEP, which makes it suitable for this purpose.
Keywords: synthetic auditory evoked potentials, independent component analysis, Amari
performance index, signal interference ratio index.
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RESUMEN
La extracción de características e información de los registros de Potenciales Evocados Auditivos (AEPs) es
complicada debido a su baja energía, la que lo hace fácilmente enmascarable por artefactos de origen fisiológico
o externo, como el EEG/EMG, el parpadeo y el ruido de línea. Este problema ha sido abordado por algunos autores
mediante el uso del Análisis por Componentes Independientes (ICA, por sus siglas en inglés), que se ha utilizado
principalmente para reducir artefactos. Estos trabajos han enfocado su interés en la tarea de remover artefactos como
el parpadeo, por lo que han descuidado el estudio de la calidad del potencial evocado recuperado. Este es el caso
del AEP, donde aun cuando la literatura reporta resultados interesantes en la reducción de artefactos, no existe una
evaluación objetiva del AEP finalmente extraído (y el efecto de usar diferentes implementaciones/configuraciones de
ICA). En este trabajo, con el objetivo de cuantificar el desempeño de tres algoritmos de ICA (FastICA, Ext-Infomax,
y SOBI) en la calidad de la separación de los AEPs, se generó una mezcla sintética de señales compuesta por un
Potencial Evocado Auditivos de Latencia Larga (LLAEP) y artefactos frecuentemente presentes en estos registros.
Después, se cuantificó la calidad de los componentes independientes (ICs, por sus siglas en inglés) estimados por estos
algoritmos utilizando el índice de desempeño (AMARI, por sus siglas en inglés) el índice de la relación de interferencia
entre señales (SIR, por sus siglas en inglés) y el tiempo requerido para realizar la separación. Los resultados indican
que FastICA, con el enfoque simétrico y la función de contraste potencia cúbica, proporciona la mejor y más rápida
separación del LLAEP, lo que lo vuelve idóneo para esta tarea.
Palabras clave: potenciales evocados auditivos sintéticos, análisis por componentes independientes,
índice de desempeño Amari, índice de la relación de interferencia entre señales.

INTRODUCTION

Event-related potentials (ERPs) are
neurological responses obtained from EEG
recordings as a result of periodic stimulation.
In particular, when an acoustic stimulus
is used, the response is referred to as the
Auditory Evoked Potential (AEP), a signal
that reflects the status of the neurological
structures of the auditory system. These
AEPs are originated in the cerebral cortex
and can be detected by using scalp electrodes.
However, due to the attenuation produced by
the tissues in the path between the source
generator and the recording point, the AEP
amplitude is about ten times smaller than
the EEG amplitude (10 µV versus 100 µV)
[1]. As a result, the AEP is completely
hidden by the EEG and easily overlapped
by physiological (e.g. ECG and EMG) and
environmental sources (e.g. line-noise) whose
amplitude (many times larger than the AEP)

and frequency content (similar to the AEP
spectral components) make it impossible for
conventional filtering procedures to extract
the AEP.

Traditionally, the approach followed to
extract the AEP aims to increase its signal
to noise ratio (SNR) by attenuating the
interference signals contribution. This
is performed by the coherent averaging,
a method that assumes that, while the
EEG and other physiological signals remain
uncorrelated and with zero-mean trial after
trial, the AEP remains constant in amplitude
and phase, which makes it possible to enhance
it by averaging the trial-to-trial responses [2].
This is the most common strategy to deal
with the low SNR, and it has been reported
that the method may manage to increase it
from a typical value of -26 dB to a value
close to 6 dB [3]. However, in practice, it
is well known that the coherent averaging
has limitations due to (1) the natural change
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of the AEP, which may difficult the SNR
enhancement, and (2) the large number of
trials required to enhance the AEP, which
involves the use of long-term studies (i.e.
more than 1000 trials) [3].

Alternatively, in an attempt to separate
the undesirable sources, the EEG/ERP
recordings have been decomposed by using
Independent Component Analysis (ICA) [4-
11]. In this approach, it is assumed that
a group of p observations, x, measured
by a set of sensors, can be modeled as a
linear instantaneous mixture of q underlying
sources, s, as

x(t) = As(t), (1)

where x = [x1, x2, · · · , xp]T , s =
[s1, s2, · · · , sq]T , and p ≥ q. Furthermore,
the sources are assumed to be non-Gaussian
(with zero-mean) and mutually statistically
independent, which makes it possible for ICA
to calculate a linear transformation W that,
when applied to x, minimizes the statistical
dependence of the output components and
produces an estimation of the underlying
sources (better known as the independent
components, ICs), ŝ, as [12-13]

ŝ = Wx(t). (2)

The recovered sources are statistically
independent by definition, and results from
different studies have appointed ICA as a
compelling tool that, in consequence, has
grown in popularity in the field of brain signal
analysis [4-11]. Most of such works, however,
have used ICA for de-noising purposes and,
therefore, have focused on the estimates
corresponding to the interference sources (e.g.
eye movements) rather than on the estimates
related to physiological events of interest like
the AEPs. In addition, and because the
original sources are unknown, only a small
number of studies have paid attention to the
identification of the ICA implementation that
truly achieves an accurate recovery of such
physiological events [4, 7, 10, 14].

The work described in this paper focused
on the reliable recovery of Long Latency
Auditory Evoked Potentials (LLAEPs) and
presents a study that aimed to identify
a suitable ICA implementation for such a
recovery from EEG/ERPs recordings. To
this end, the performance of three popular
ICA algorithms for brain signal analysis
(FastICA, Ext-Infomax and SOBI) and their
configurations was tested on a synthetic EEG
dataset. This by means of three indexes
that evaluated (a) the overall quality of
the ICA separation, (b) the quality of the
LLAEP estimated by ICA, and (c) the time
required to estimate the sources underlying
the dataset.

METHODS

Synthetic data generation

The dataset was constructed by making two
fundamental assumptions about the signals
composing the EEG/LLAEP recordings:
(a) the auditory response and the basal
EEG are signals permanently present in
these recordings and (b) the most common
interference signals are the ECG, the
blinking, the muscle activity, the electrode
drift, and electrode noise.

The LLAEP appears at about 90 ms
after the stimuli onset, lasts about 230 ms
and, according to [15], can be generated by
simulating an asymmetric biphasic complex
(N100-P200). Thus, in this work, the
positive half-period of an 8.25 Hz sinusoid
was joined to the negative half period of a
6.25 Hz sinusoid, where the peak to peak
amplitude of the LLAEP was fixed at 12
µV. Additionally, to keep a constant interval
between consecutive potentials, the LLAEPs
were generated at a rate of 1 Hz.

The basal EEG is a signal whose frequency
content in normal conditions goes from very
low frequencies (Delta-band, up to 4 Hz) to
high frequencies (Gamma-band, 30-100 Hz).
It is a permanent artifact that, unfortunately,
cannot be avoided, reduced or eliminated
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during the LLAEP recording due to its
physiological nature. Here, the EEG signal
was produced using the generator available
in [16], which made it possible to combine
several sinusoids ranging from 0.1 to 125 Hz;
with maximum amplitude of ± 20 mV.

Regarding the typical interferences, (a)
the heart may produce electrical and
mechanical artifacts in the EEG, and its
presence indicates that an electrode is located
on a blood vessel. In that case, the
large amplitude and wide spectral content of
the ECG turn the signal into a significant
interference that affects both, the morphology
and peak latency of the LLAEP waveforms.
Thus, to take this artifact into account,
this work produced a synthetic ECG by
using the generator available in [17], with
a frequency of 60 beats per minute and
a maximum amplitude of 50 µV. (b) The
blinking artifacts are produced by ocular
movements that may be present even when
the study is made in resting conditions, when
the patient is lying, calmed and eyes closed.
The eye blink is modelled by a “V” shape
potential, which in this work was generated
by a single triangular signal, with amplitude
of 200 µV and randomly located in time
[10]. (c) The muscle artifact is due to the
muscle electrical activity produced by the
contraction of either face muscles or muscles
needed when swallowing saliva. The signal
resembles spikes or a short burst activity,
and it was generated here by using random
noise (with amplitude of ± 200 µV) that was
band-pass filtered between 20 and 60 Hz [5].
(d) The electrode drift artifact is caused by
a lose electrode, and it was generated by
a ramp in this work [10]. (e) Finally, to
simulate electrode noise, an unfiltered white
noise signal, with amplitude of ± 150 µV, was
included in the dataset.

The synthetic signals and their
corresponding probability density distribution
(p.d.d.) are depicted in figure 1.

Figure 1. Ten seconds of the synthetic signals
generated in this work along with their probability
density distributions. From top to bottom: the
LLAEP, the ECG, the eye blinking, the basal EEG,
the electrode drift, the muscle activity and the
electrode noise.

The EEG and the electrode noise signals
have Gaussian distributions, the LLAEP,
the blinking, the ECG and the muscular
activity have super-Gaussian distributions,
while the electrode drift has a sub-Gaussian
distribution.

After the generation of each signal, a
mixture was produced by calculating the
product between them and a square matrix
(A) that was randomly generated with values
between -1 and 1 as reported in [18].

Separation into ICs by three
implementations of ICA

To date, there are several implementations
of ICA. Some algorithms are based on
techniques that involve higher-order statistics
(HOS), while others exploit the time
structure of the sources to establish
independence [8, 12, 13, 18-22]. Thus,
while HOS implementations like FastICA [12,
18] and Ext-Infomax [21, 23] look for non-
Gaussian distributions in the estimates, time
structure implementations like SOBI [20, 22]
look for no spatial temporal or no spatial
time-frequency correlations.

These implementations can be easily
downloaded from the webpages of the
developers. However, to properly apply
a particular ICA algorithm on a specific
dataset, it is important to be aware of the
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criteria and parameters used by such an
implementation to solve equation 2, otherwise
the results may not make any sense. Such
information will be described in the next
paragraphs for the algorithms tested in this
work:

a. FastICA (FICA) is a simple and
relatively fast implementation to estimate
independent sources from a linear mixture
[12, 13, 18]. It estimates ICs by following
either the deflation approach (Defl), where
the components are extracted one by one,
or the symmetric approach (Sym), where the
components are simultaneously extracted. To
work, it uses simple estimates of Negentropy
(J), a very important measure of non-
Gaussianity that, as shown in [12], can be
approximated by means of the maximum
entropy principle as

J(w) = [E{G(wTv)} − E{G(v)}]2, (3)

where w is an m-dimensional vector such as
E{(wTv)2} = 1, v is a Gaussian variable with
zero mean and unit variance and G is a non-
quadratic cost function.

The problem is now reduced to find a
transformation W whose vectors, w, are
iteratively adjusted to maximize J (which is
equivalent to reduce the mutual information).
This is performed by a fixed-point algorithm
that, in the deflation approach, is achieved by
following the learning rule given by

w∗ = E{vg(wTv)} − E{g′(wTv)}w, (4)
w = w∗/||w∗||, (5)

and, in the symmetric approach, by the rule
given by

W∗ = E{g(Wv)vT} −Diag(E{g′(Wv)})W,
(6)

W = (W∗W∗T )1/2W∗, (7)

where Diag(v) is a diagonal matrix with
Diagii(v) = vi, and g and g′ are respectively
the first and second derivative of G.

This ICA implementation converges much
faster than gradient based methods, it is
computationally simpler and requires little
memory space, which turns FICA into
a very popular implementation of ICA.
However, the function g (commonly referred
to as nonlinearity) must be carefully chosen
to obtain a good approximation of the
Negentropy and, therefore, of the ICs. Thus,
commonly g functions used with the FICA
algorithm include Tanh (i.e. g(v) =
tanh(v)), Pow3 (i.e. g(v) = v3), Gauss
(i.e. g(v) = v exp(−v2/2)), and Skew
(i.e. g(v) = v2). Tanh is considered
to be a good general purpose contrast
function, while Pow3 is only recommended for
estimating sub-Gaussian components when
no outliers are present. (i.e. the algorithm
performs kurtosis minimization), Gauss is
useful when the independent components are
highly super-Gaussian (or when robustness is
very important) and Skew is recommended
when high-skewness is characteristic in the
sources.

In our study, the performance of FICA
was tested on the simulated dataset using
the entire set of combinations between the
separation approach (i.e. Sym and Defl) and
the nonlinearities (i.e. Tanh, Pow3, Gauss
and Skew).

b. Ext-Infomax [21] is an extended
version of the Infomax algorithm proposed
by Bell and Sejnowsky [19], and makes it
possible to separate sources with sub- and
super-Gaussian distributions. To work, it
uses a gradient based neural network whose
algorithm can be derived by the maximum
likelihood formulation that, in its logarithmic
form, can be expressed as

L(u,W) = log | det(W)|+
N∑

i=1
log pi(ui), (8)

where p is the hypothesized distribution
of the sources, and the maximization of
equation 8 is achieved by the modified
learning rule given by
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∆W =
{

[I− tanh(u)uT − uuT ]W : super-Gaussian
[I + tanh(u)uT − uuT ]W : sub-Gaussian

(9)
where the learning rules differ in the sign
before the function tanh and are specified
to the implementation by using a switching
criterion as

∆W = [I−K tanh(u)uT−uuT ]W
{
ki = 1 : super-Gaussian
ki = −1 : sub-Gaussian

(10)
where ki are elements of the N -dimensional
diagonal matrix K and indicate the number
of sub- or super-Gaussian distributions to be
estimated by the algorithm.

In this work, the performance of this
ICA implementation was tested when: 1)
the algorithm automatically estimates the
number of non-Gaussian sources (i.e. k =
1) and 2) the user specifies the number of
sub-Gaussian sources to be estimated by the
algorithm (i.e. k =?1 since the simulated
mixture included one sub-Gaussian signal,
the ramp).

c. SOBI (i.e. Second-Order Blind
Identification [20]) is an algorithm that
defines independence by the absence of
cross-correlations among sources and, thus,
exploits their temporal structure to find
W. To this end, SOBI performs the
joint diagonalization of a set of several
time-lagged covariance matrices, where the
diagonalization of a matrix B can be
represented as [22]

off(B) =
∑

1≤i 6=j≤q

|Bij|2, (11)

and the simultaneous diagonalization of k
matrices becomes an optimization problem
with respect to a matrix G such that the
sum of all the off-diagonal terms in off(Bi),
for i = 1, · · · , k is minimum as

min
G

k∑

i=1
off(GT BiG). (12)

(9)
where the learning rules differ in the sign
before the function tanh and are specified
to the implementation by using a switching
criterion as
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The diagonalizing matrix G turns out to
be the mixing matrix A, from where it is
possible to calculate W and thus, the ICs by
using equation 2. Certainly, the key point on
the performance of the algorithm is related to
the number of time-delayed matrices specified
by k. In fact, it has been reported that
increasing this value makes the performance
of SOBI more robust in poor SNR settings
and less sensitive to large spectral overlapping
between sources [20].

In this work, to test the performance of
SOBI on the simulated dataset, three values
of k were used to specify the number of time-
lagged matrices to be diagonalized by SOBI:
100, 124 and 150. The former was used
because it is the default value, while the latter
two were used to cover respectively 50 % and
60 % of the total length of the epochs of the
simulated LLAEP.

The combinations between the ICA
implementations and the parameters tested
in this work gave rise to a total of 13
configurations that are summarized in table
1.

Performance assessment
The performance of each ICA configuration
was tested in three ways: first, by evaluating
the overall quality of the separation, second,
by evaluating the quality of the component
of interest in this work, i.e. the separate
LLAEP, and third, the time required to
estimate the sources underlying the dataset.
This was suitable due to the synthetic nature
of the signals, which made it possible to
use the Amari performance index (Am) to
quantify the overall separation quality [24]
and the signal to interference ratio index
(SIR) to quantify the LLAEP separation
[25]. Regarding the computational time, it
was calculated using the Matlab c© function
cputime, which returns the CPU time used
to execute a segment of code (the experiments
were conducted in a computer with an Intel
Core i5 processor (i5-3317U @ 1.70 GHz),
5.89 GB of RAM and Windows 8 Single
Language).
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Table 1. ICA configurations tested to recover the LLAEP.
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Table 1. ICA configurations tested to recover the LLAEP.
Algorithm Parameters Identifier

Approach Contrast function
FICA Symmetric Tanh FICA-Sym-Tanh

Pow3 FICA-Sym-Pow3
Gauss FICA-Sym-Gauss
Skew FICA-Sym-Skew

Deflation Tanh FICA-Defl-Tanh
Pow3 FICA-Defl-Pow3
Gauss FICA-Defl-Gauss
Skew FICA-Defl-Skew

Ext-Infomax Maximum likelihood Tanh (super-Gaussian) Ext-Infomax-N1
-Tanh (sub-Gaussian) Ext-Infomax-N−1

SOBI Absence of cross-correlations – SOBI-100
– SOBI-124
– SOBI-150

 
Figure 1. Ten seconds of the synthetic signals generated in 
this work along with their probability density distributions. 
From top to bottom: the LLAEP, the ECG, the eye blinking, 
the basal EEG, the electrode drift, the muscle activity and the 
electrode noise. 
 

After the generation of each signal, a mixture was 
produced by calculating the product between them and 
a square matrix ({\bf A}) that was randomly generated 
with values between -1 and 1 as reported in [18]. 
 
2.2. Separation into ICs by three 
implementations of ICA 
 
To date, there are several implementations of ICA. 
Some algorithms are based on techniques that involve 
higher-order statistics (HOS), while others exploit the 
time structure of the sources to establish independence 
[8, 12, 13, 18-22]. Thus, while HOS implementations 
like FastICA [12, 18] and Ext-Infomax [21, 23] look for 
non-Gaussian distributions in the estimates, time 
structure implementations like SOBI [20, 22] look for 
no spatial temporal or no spatial time-frequency 
correlations. 

These implementations can be easily downloaded 
from the webpages of the developers. However, to 
properly apply a particular ICA algorithm on a specific 
dataset, it is important to be aware of the criteria and 
parameters used by such an implementation to solve 
equation 2, otherwise the results may not make any 
sense. Such information will be described in the next 
paragraphs for the algorithms tested in this work: 
 

a. FastICA (FICA) is a simple and relatively fast 
implementation to estimate independent sources from a 
linear mixture [12, 13, 18]. It estimates ICs by 
following either the deflation approach (Defl), where 
the components are extracted one by one, or the 
symmetric approach (Sym), where the components are 
simultaneously extracted. To work, it uses simple 
estimates of Negentropy ($J$), a very important 

measure of non-Gaussianity that, as shown in [12], can 
be approximated by means of the maximum entropy 
principle as  

𝐽 𝑤 = 𝐸 𝐺 𝑤!𝑣 − 𝐸 𝐺 𝑣 !, (3) 

where $w$ is an $m$-dimensional vector such as $E\{ 
(w^Tv)^2\} = 1$, $ν$ is a Gaussian variable with zero 
mean and unit variance and $G$ is a non-quadratic cost 
function. 

The problem is now reduced to find a 
transformation {\bf W} whose vectors, $w$, are 
iteratively adjusted to maximize $J$ (which is 
equivalent to reduce the mutual information). This is 
performed by a fixed-point algorithm that, in the 
deflation approach, is achieved by following the 
learning rule given by 

𝑤∗ = 𝐸 𝑣𝑔 𝑤!𝑣 − 𝐸 𝑔! 𝑤!𝑣 𝑤, (4) 

𝑤 = 𝑤∗
𝑤∗ , (5) 

and, in the symmetric approach, by the rule given by 

𝐖∗ =
𝐸 𝑔 𝐖𝑣 𝑣! − Diag 𝐸 𝑔! 𝐖𝑣 𝐖, (6) 

𝐖 = 𝐖∗𝐖∗! !
!  𝐖∗, (7) 

where Diag($v$) is a diagonal matrix with Diag$_{ii}(v) 
= v_i$, and $g$ and $g’$ are respectively the first and 
second derivative of $G$. 

This ICA implementation converges much faster 
than gradient based methods, it is computationally 
simpler and requires little memory space, which turns 
FICA into a very popular implementation of ICA. 
However, the function $g$ (commonly referred to as 
nonlinearity) must be carefully chosen to obtain a good 
approximation of the Negentropy and, therefore, of the 
ICs. Thus, commonly g functions used with the FICA 
algorithm include Tanh (i.e. $g(v)= \tanh (v)$), Pow3 
(i.e. $g(v)= v^3$), Gauss (i.e. $g(v)= v \exp (-v^2/2)$), 
and Skew (i.e. $g(v)= v^2$). Tanh is considered to be a 
good general purpose contrast function, while Pow3 is 
only recommended for estimating sub-Gaussian 
components when no outliers are present. (i.e. the 
algorithm performs kurtosis minimization), Gauss is 
useful when the independent components are highly 
super-Gaussian (or when robustness is very important) 
and Skew is recommended when high-skewness is 
characteristic in the sources. 

In our study, the performance of FICA was tested 
on the simulated dataset using the entire set of 
combinations between the separation approach (i.e. 
Sym and Defl) and the nonlinearities (i.e. Tanh, Pow3, 

Figura 1. Concepto de medición termográfica
en glándula mamaria. Se muestra la imagen
termográfica de mamas de una paciente voluntaria
obtenida con cámara termográfica Fluke Ti10.

Termografía Tisular Diferenciada
(TTD) y Análisis

Con las temperaturas obtenidas en la región
tisular de mama a partir de imágenes
termográficas, se calculó la temperatura
promedio tisular en cada mama y se realizó
una normalización a través de la diferencia
en relación a la mama contralateral de

la misma paciente, el mesurado estimado
le denominamos “Termografía Tisular
Diferenciada” (TTD) en espejo, tal mesurado
se representa en la siguiente expresión:

[TTD]oC =abs[oTprom mama Der

− oTprom mama Izq]oC (13)

Con los valores TTD obtenidos y tomando
como referencia el diagnóstico histopatológico
se realizó un análisis de sensibilidad y
especificidad a partir de la estimación de
curvas ROC para pruebas diagnósticas, el
resultado fue comparado con los valores
arrojados por el diagnóstico radiológico (TTD
vs BIRADS).

RESULTADOS

La tabla I muestra los valores promedio
y desviación estándar de la edad, IMC y
temperatura corporal correspondientes a los
grupos experimentales.

In each case, the ICA configurations were
applied ten times to the mixture, and the
mean and standard deviation values of each
index were finally calculated to quantify the
stability of the decomposition achieved by
ICA.

The indexes were calculated as follows:
a. Quality of the overall separation:

Quantified by Am, it requires the knowledge
of both,A andW to obtain a global matrixP
= (pij ) = WA from where Am is calculated
as

Am =
n∑

i=1




n∑

j=1

|pij|
maxk |pik|

− 1



+
n∑

i=1




n∑

j=1

|pij|
maxk |pkj|

− 1

 , (13)

where |pij| is the ij−th element of the matrix
P, and the denominator is a normalization
factor, i.e. the maximum value of the whole
matrix. Thus, an Am value close to zero
means that a good separation was achieved
by ICA.

b. Quality of the separate LLAEP:
Quantified by SIR, it requires the knowledge
of a target signal to be compared against
each of the ICs in order to quantify how
much of such a target is present in them

and, therefore, how well a specific source like
the LLAEP could be estimated by ICA. In
our case, the target signal was given by the
synthetic LLAEP and the SIR index in dB
was calculated by

SIR(dB) = 10 log |〈ŝi, si〉|2
||ŝi||2||si||2 − |〈ŝi, si〉|2

(14)
where ŝi is an IC, si is the target signal or
pattern known, | < ·, · > | is the dot product,
and || · || is the magnitude. In this way, the
maximum value of SIR corresponds to the IC
associated to the target signal (or at least to
the IC containing the most of it).

RESULTS

Figure 2 illustrates the seven ICs estimated
by one iteration of the ICA configuration
that gave the largest mean value of Am, i.e.
FICA-Defl-Skew. As expected, the separate
signals have zero-mean, variance one and
present the permutation and sign ambiguities
typical of ICA, where the latter is evident in
IC5 (the estimated EEG) and, after a careful
observation, in IC7 (the electrode noise).
Additionally, it can be seen that, while the
blinking activity is clearly represented by IC1
and the ramp signal seems to be missing,
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is evident only in IC2, where the ECG was estimated 
with a negative sign. Regarding the separation, it can 
be seen that the number of mixtures is smaller than in 
the previous case, and that only IC6 seems to contain a 
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the index used to evaluate the overall quality of the 
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this work ({\bf Am}). In general, it can be seen that the 
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values larger than 0.7 (enclosed by red circles), (2) 
mean values smaller than 0.7 with standard deviations 
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mean values smaller than 0.7 with standard deviations 
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In particular, as indicated by the red circles (and 
summarized in table 2), independently on the approach 
selected, the configurations given by FICA-Skew 
produced the largest mean {\bf Am} values, where 
FICA-Sym-Skew presented a value of 0.99 $\pm$ 
0.003 and FICA-Defl-Skew presented a value of 1.1 
$\pm$ 0.054. Regarding the configurations whose 
index remained below 0.7, the blue squares indicate 
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green rectangles, the configurations whose index 
presented a larger standard deviation were FICA-Defl-
Pow3 (0.16 $\pm$ 0.030), FICA-Defl-Gauss (0.19 
$\pm$ 0.037), FICA-Defl-Tanh (0.31 $\pm$ 0.090), 
and FICA-Sym-Gauss (0.39 $\pm$ 0.206). 
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Figure 4. Mean and standard deviation of the index
used to evaluate the overall quality of the separation
(Am) achieved by each ICA configuration tested in
this work.

in IC7 and IC6 is still mixed with the EEG
in IC5.

Figure 3 depicts the seven ICs estimated
by one iteration of the ICA configuration that
gave the smallest mean value of Am, i.e.
FICA-Sym-Pow3. As before, the ICs have
zero-mean, variance one and present both
ambiguities, although the sign uncertainty is
evident only in IC2, where the ECG was
estimated with a negative sign. Regarding
the separation, it can be seen that the number
of mixtures is smaller than in the previous
case, and that only IC6 seems to contain
a combination of the ramp signal and some
EMG and blinking activities. Thus, the
electrode noise can be seen in IC1, the ECG
in IC2, the muscular activity in IC3, the EEG
in IC4, the LLAEP in IC5 and the blinking
activity in IC7.

Figure 4 depicts the mean and standard
deviation of the index used to evaluate the
overall quality of the separation for the
thirteen ICA configurations tested in this
work (Am). In general, it can be seen that
the Am index presented three behaviors, (1)
mean values larger than 0.7 (enclosed by
red circles), (2) mean values smaller than
0.7 with standard deviations smaller than
0.003 (enclosed by blue squares), and (3)
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mean values smaller than 0.7 with standard
deviations larger than 0.038 (enclosed by
green rectangles).

In particular, as indicated by the
red circles (and summarized in table 2),
independently on the approach selected, the
configurations given by FICA-Skew produced
the largest mean Am values, where FICA-
Sym-Skew presented a value of 0.99 ± 0.003
and FICA-Defl-Skew presented a value of 1.1
± 0.054. Regarding the configurations whose
index remained below 0.7, the blue squares
indicate that the smallest values in both,
mean and standard deviation were given
by FICA-Sym-Pow3 (0.13 ± 0.000), Ext-
Infomax-N−1 (0.16 ± 0.000), SOBI-150 (0.16
± 0.00), Ext-Infomax-N1 (0.16 ± 0.002),
SOBI-124 (0.17 ± 0.000), SOBI-100 (0.17 ±
0.002), and FICA-Sym-Tanh (0.19 ± 0.000).
On the other side, as indicated by the green
rectangles, the configurations whose index
presented a larger standard deviation were
FICA-Defl-Pow3 (0.16 ± 0.030), FICA-Defl-
Gauss (0.19 ± 0.037), FICA-Defl-Tanh (0.31
± 0.090), and FICA-Sym-Gauss (0.39 ±
0.206).

Figure 5 depicts the mean and standard
deviation of the index used to evaluate the
quality of the LLAEPs separated by ICA in
this work (SIR). In general, it can be seen
that the SIR index presented three trends,
(1) mean values lower to 20 dB (enclosed
by red circles), (2) mean values larger than
20 dB with standard deviations smaller than
20 dB (enclosed by blue rectangles), and (3)
mean values larger than 20 dB with standard
deviations larger than 20 dB (enclosed by
green ovals).

In particular, as indicated by the
red circles (and summarized in table
2), independently on the approach, the
combination given by FICA-Skew gave
the smallest SIR values (3.01 ± 0.00 for
the symmetric approach and 14.31 ± 0.00
for the deflation approach), followed by
SOBI-124 (16.43 ± 0.00), SOBI-100 (16.90
± 0.00) and SOBI-150 (17.85 ± 0.00).

Figure 5 depicts the mean and standard deviation of 
the index used to evaluate the quality of the LLAEPs 
separated by ICA in this work ({\bf SIR}). In general, it 
can be seen that the {\bf SIR} index presented three 
trends, (1) mean values lower to 20 dB (enclosed by 
red circles), (2) mean values larger than 20 dB with 
standard deviations smaller than 20 dB (enclosed by 
blue rectangles), and (3) mean values larger than 20 dB 
with standard deviations larger than 20 dB (enclosed by 
green ovals).  

In particular, as indicated by the red circles (and 
summarized in table 2), independently on the approach, 
the combination given by FICA-Skew gave the 
smallest {\bf SIR} values (3.01 $\pm$ 0.00 for the 
symmetric approach and 14.31 $\pm$ 0.00 for the 
deflation approach), followed by SOBI-124 (16.43 
$\pm$ 0.00), SOBI-100 (16.90 $\pm$ 0.00) and SOBI-
150 (17.85 $\pm$ 0.00). Regarding the other 
configurations, the largest mean {\bf SIR} values (with 
the smaller standard deviations) were produced by 
FICA-Sym-Pow3 (40.30 $\pm$ 13.22), FICA-Sym-
Tanh (38.87 $\pm$ 17.24), FICA-Sym-Gauss (36.03 
$\pm$ 14.15). Conversely, the largest mean {\bf SIR} 
values (with the larger standard deviations) were 
produced by FICA-Defl-Tanh (31.22 $\pm$ 34.32), 
FICA-Defl-Gauss (39.72 $\pm$ 30.99), Ext-Infomax-
N-1 (39.95 $\pm$ 29.42), FICA-Defl-Pow3 (32.09 
$\pm$ 26.95), and Ext-Infomax-N$_1$ (39.98 $\pm$ 
24.11).  
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ICA configurations Am (mean $\pm$ std) SIR (mean $\pm$ std) dB Time (mean $\pm$ std) s 
FICA-Sym-Tanh 0.19 $\pm$ 0.000 38.87$\pm$17.24 1.82 $\pm$ 0.76 
FICA-Sym-Pow3 0.13 $\pm$ 0.000 40.30$\pm$13.22 2.12 $\pm$ 0.34 
FICA-Sym-Gauss 0.39 $\pm$ 0.206 36.03$\pm$14.15 1.70 $\pm$ 0.35 
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Figure 5. Mean and standard deviation of the index
(SIR) used to evaluate the quality of the LLAEP
separated by each ICA configuration tested in this
work.

Regarding the other configurations, the
largest mean SIR values (with the smaller
standard deviations) were produced by
FICA-Sym-Pow3 (40.30 ± 13.22), FICA-
Sym-Tanh (38.87 ± 17.24), FICA-Sym-Gauss
(36.03 ± 14.15). Conversely, the largest
mean SIR values (with the larger standard
deviations) were produced by FICA-Defl-
Tanh (31.22 ± 34.32), FICA-Defl-Gauss
(39.72 ± 30.99), Ext-Infomax-N−1 (39.95 ±
29.42), FICA-Defl-Pow3 (32.09 ± 26.95), and
Ext-Infomax-N1 (39.98 ± 24.11).

Finally, on the matter of the
computational time required by each ICA
configuration, it was found that, as expected,
independently on the parameters used,
FastICA required the least mean time to
estimate the components. In fact, as
presented in table 2, it can be seen that the
combinations given by FICA-Sym-Skew (0.81
± 0.16) and FICA-Defl-Skew (0.92 ± 0.06)
took in average less than 1 s to estimate the
ICs, while FICA-Sym-Tanh (1.82 ± 0.76),
FICA-Sym-Gauss (1.70 ± 0.35), FICA-Defl-
Tanh (1.88 ± 0.25), FICA-Defl-Pow3 (1.74
± 0.24), and FICA-Defl-Gauss (1.89 ± 0.71)
took a mean time between 1 and 2 s and
FICA-Sym-Pow3 (2.12 ± 0.34) took more
than 2 s.
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Table 2. Mean and standard deviation of the indexes used to evaluate the performance of thirteen
configurations of ICA. Am quantifies the overall separation, SIR quantifies the quality of the

separate LLAEP and Time indicates the time required by each configuration to achieve separation.

Indexes
ICA configurations Am (mean ± std) SIR (mean ± std) dB Time (mean ± std) s
FICA-Sym-Tanh 0.19 ± 0.000 38.87 ± 17.24 1.82 ± 0.76
FICA-Sym-Pow3 0.13 ± 0.000 40.30 ± 13.22 2.12 ± 0.34
FICA-Sym-Gauss 0.39 ± 0.206 36.03 ± 14.15 1.70 ± 0.35
FICA-Sym-Skew 0.99 ± 0.003 3.01 ± 0.00 0.81 ± 0.16
FICA-Defl-Tanh 0.31 ± 0.090 31.22 ± 34.32 1.88 ± 0.25
FICA-Defl-Pow3 0.16 ± 0.030 32.09 ± 26.95 1.74 ± 0.24
FICA-Defl-Gauss 0.19 ± 0.037 39.72 ± 30.99 1.89 ± 0.71
FICA-Defl-Skew 1.10 ± 0.054 14.31 ± 0.00 0.92 ± 0.06
Ext-Infomax-N1 0.16 ± 0.002 39.98 ± 24.11 162.92 ± 24.93
Ext-Infomax-N−1 0.16 ± 0.000 39.95 ± 29.42 89.93 ± 20.29

SOBI-100 0.17 ± 0.000 16.90 ± 0.00 2.90 ± 0.36
SOBI-124 0.17 ± 0.000 16.43 ± 0.00 12.78 ± 1.42
SOBI-150 0.16 ± 0.000 17.85 ± 0.00 29.56 ± 3.15

Regarding the other ICA implementations
tested in this work, only the one given
by SOBI-100 (2.90 ± 0.36) required a
mean time similar to the time used by
FastICA. Conversely, as seen in table 2,
the mean time required by the remaining
configurations of SOBI and Ext-Infomax were
considerably larger, especially for the Ext-
Infomax implementation, whose minimum
separation time was larger than 40 times the
maximum time required by FastICA.

DISCUSSION AND CONCLUSIONS

This work presented a study to identify a
suitable ICA implementation/configuration
for recovering LLAEPs from simulated
EEG/ERP data. It was performed by
using three indexes that quantified the
global separation accuracy, the LLAEP
separation accuracy, and the computational
time required by a total of thirteen ICA
configurations to estimate the ICs.

According to our results, the combination
given by FICA-Sym-Pow3 overcame the
performance of the other ICA configurations
in both, the global and the LLAEP

separation. It was clearly observed on the
recovered ICs that, up to the permutation
and scaling ambiguities, they remained highly
similar to the simulated signals. Such
observations were quantitatively confirmed
by the separation indexes, which gave the
smallest mean Am value and the largest
mean SIR value. Also, as indicated by the
smaller standard deviations of such indexes, it
was evident that FICA-Sym-Pow3 provides a
stable separation that, in consequence, makes
it possible for this particular configuration
of ICA to achieve a robust and quite fast
separation (2.1 ± 0.3 s), at least for the
component corresponding to LLAEP.

The superior performance of FICA-Sym-
Pow3 over other configurations of the same
ICA implementation can be explained by
the use of Pow3 as the contrast function
G, which is recommended to recover sources
with “spiky” distributions [26] like the
LLAEP one. Thus, by recalling that
the separation performance of FastICA is
highly dependent on the contrast function
used when estimating non-Gaussianity, it
was expected to find performance variations
among FICA configurations, but never in
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such a degree that, among the entire set of
configurations and implementations tested in
this work, they would point at FICASym-
Pow3 as the best separation option and at
FICA-Defl-Skew as the worst one.

Regarding the time required to estimate
the ICs, a general advantage of FastICA
is that it does not require as much time
to achieve a separation as SOBI and Ext-
Infomax. This characteristic is partially
achieved by randomly initializing W, which
aims to set the optimization process close
to the minimum of the contrast function.
This strategy helps the algorithm converge
faster, but it also makes the method highly
dependent on its initialization, and thus,
creates the risk for it to converge to a local
minimum rather to the global minimum. As a
result, the ICs estimated by FastICA from the
same dataset might be very different among
calculations, which reduce their stability.
In our study, this lack of stability was
especially evident in the SIR values of the
FastICA configurations based on the deflation
approach (with the exception of the FICA-
Defl-Skew combination), where the standard
deviation of the SIR values were close to
their average values. This behavior could be
produced by the errors accumulated during
the successive calculations in the deflation
stages, which in consequence turn such
combinations into an inappropriate choice for
the LLAEP recovery [27].

Regarding Ext-Infomax and SOBI, their
configurations presented Am indexes similar
to FastICA and their variations remained
close to zero. This means that, on the overall
separation performance, both algorithms are
stable implementations of ICA. However,
although Ext-Infomax also managed to
achieve a good separation of the LLAEP
(according to the SIR values), due to the low
learning rate required by its neural network
to achieve convergence [28], it took plenty of
time to do so (more than one minute to look
for a sub-Gaussian IC and more than two and
a half minutes on its free configuration). In

addition, it produced large variations on the
SIR index, which means that Ext-Infomax
is more likely to perform unstable LLAEP
separations in both configurations (Ext-
Infomax-N1 and Ext-Infomax-N−1). SOBI,
on the other hand, took less time than Ext-
Infomax to separate the ICs (between 2 and
30 s depending on the number of time-lags),
but generated very low quality separations
of LLAEP, which can be attributed to the
wrong selection of that parameter. This
means that, for the purpose of recovering
the LLAEP from EEG/ERP signals, SOBI is
an unsuitable implementation, especially for
long-time recordings.

Results so far have been promising and
appointed the combination given by FICA-
Sym-Pow3 as a reliable and fast alternative
to recover LLAEPs from synthetic EEG/ERP
data. Future work will expand this study
to include real EEG data (with a synthetic
LLAEP) and test these ICA implementations
under less restricted conditions.
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