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ABSTRACT 
Multiple Sclerosis (MS) is the most common neurodegenerative disease among young adults. Diagnosis and mo-
nitoring of MS is performed with T2-weighted or T2 FLAIR magnetic resonance imaging, where MS lesions appear 
as hyperintense spots in the white matter. In recent years, multiple algorithms have been proposed to detect these 
lesions with varying success rates, which greatly depend on the amount of a priori information required by each al-
gorithm, such as the use of an atlas or the involvement of an expert to guide the segmentation process. In this work, 
a fully automatic method that does not rely on a priori anatomical information is proposed and evaluated. The pro-
posed algorithm is based on an over-segmentation in superpixels and their classification by means of Gauss-Markov 
Measure Fields (GMMF). The main advantage of the over-segmentation is that it preserves the borders between 
tissues, while the GMMF classifier is robust to noise and computationally efficient. The proposed segmentation is 
then applied in two stages: first to segment the brain region and then to detect hyperintense spots within the brain. 
The proposed method is evaluated with synthetic images from BrainWeb, as well as real images from MS patients. 
The proposed method produces competitive results with respect to other algorithms in the state of the art, without 
requiring user assistance nor anatomical prior information.
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RESUMEN
La Esclerosis Múltiple (MS) es una de las enfermedades neurodegenerativas más comunes en adultos jóvenes. El 
diagnóstico y su monitoreo se realiza generalmente mediante imágenes de resonancia magnética T2 o T2 FLAIR, 
donde se observan regiones hiperintensas relacionadas a lesiones cerebrales causadas por la MS. En años recientes, 
múltiples algoritmos han sido propuestos para detectar estas lesiones con diferentes tasas de éxito las cuales depen-
den en gran medida de la cantidad de información a priori que requiere cada algoritmo, como el uso de un atlas o 
el involucramiento de un experto que guíe el proceso de segmentación. En este trabajo, se propone un método au-
tomático independiente de información anatómica. El algoritmo propuesto está basado en una sobresegmentación 
en superpixeles y su clasificación mediante un proceso de Campos Aleatorios de Markov de Medidas Gaussianas 
(GMMF). La principal ventaja de la sobresegmentación es que preserva bordes entre tejidos, además que tiene un 
costo reducido en tiempo de ejecución, mientras que el clasificador GMMF es robusto a ruido y computacionalmen-
te eficiente. La segmentación propuesta es aplicada en dos etapas: primero para segmentar el cerebro y después 
para detectar las lesiones en él. El método propuesto es evaluado usando imágenes sintéticas de BrainWeb, así 
como también imágenes reales de pacientes con MS. Con respecto a los resultados, el método propuesto muestra 
un desempeño competitivo respecto a otros métodos en el estado del arte, tomando en cuenta que éste no requiere 
de asistencia o información a priori. 

PALABRAS CLAVE: Esclerosis Múltiple; Detección de Lesiones; Superpixeles; GMMF; Segmentación de Imágenes
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INTRODUCTION
Neurodegenerative diseases are one of the most critical 

issues for the health sector. Not only elderly people are 
the most affected by neurodegenerative diseases, but 
also young people can suffer from them. Multiple sclero-
sis (MS) is a neurodegenerative disease that mainly 
affects people between 20 and 40 years old, with high 
incidence in the general population. In fact, it is the sec-
ond in incidence, epilepsy being the first [1]. The cause of 
MS is controversial but seems to depend on genetic and 
environmental factors and may also have a strong 
auto-immune component. The diagnosis and prognosis 
are well established nowadays by neurologists. The 
symptoms are described by the patient, and evidence is 
found through physical examination. In clinics, the 
neurologist verifies the symptoms of the patient (for 
example weakness, blurred vision, ataxia, etc.), and 
then requests a brain imaging study. Magnetic reso-
nance imaging (MRI) is highly recommended in this 
case, with the most common protocols for this purpose 
being: T1-w, T2-w, Proton Density (PD) and Fluid 
Attenuated Inversion Recovery (FLAIR). In brain images, 
the neurologist manually annotates MS lesions, which 
in FLAIR images are shown as high-intensity spots on 
the white matter. It is important to mention that manual 
annotation and counting of hyper-intense spots is often 
an extensive and tedious process because the clinician 
needs to check dozens of images and may find several 
spots for a single patient. Hence, there is a large interest 
in designing algorithms that can automatically detect 
MS lesions or assist the expert during the process [2] [3]. In 
the past decades, various methods to segment MS 
lesions in MRI images have been published; however, 
some of these methods suffer from low accuracy or have 
such a large number of parameters to tune that they are 
not user-friendly. Other approaches rely heavily on the 
user's participation, or need atlas databases, requiring 
additional preprocessing time (for instance, to align the 
atlas with the input images). For these reasons, it is 
interesting to develop fully automatic and user-friendly 
methods to aid in the detection of MS lesions.

There are a few reviews of methods for MS lesion seg-
mentation in the literature [4] [5]. Some of those meth-
ods are based on probabilistic approaches [6] [7], support 
vector machines (SVM) [8], region growing [9], K-Nearest 
Neighbors [10] or neural networks [11], while some 
methods may also use additional prior information 
such as atlases [12] or clinical information [13]. Many of 
these methods use pre-processing steps to prepare the 
input images for MS lesion detection, such as image 
denoising and non-uniformity correction. Also, since 
some non-brain tissues such as scalp and optic nerve 
are also shown with high intensity on T2-w images, a 
skull stripping step is often required; to this end, sev-
eral methods use the Brain Extraction Tool (BET) [3]. 
Among the algorithms for MS lesion detection, several 
methods are based on Expectation-Maximization 
(EM) to segment MS lesions [14] [15] due to its good accu-
racy and easy implementation. In the EM-based 
method proposed by Garcia-Lorenzo et al. [15], the algo-
rithm is divided in three steps. In the first and second 
steps, there is a non-uniformity correction of the input 
image, followed by a skull stripping process. Finally, in 
the last step, the MS lesion detection is applied using 
clinical rules to select potential regions with good 
results (reported Specificity of 0.9954). Another inter-
esting method, which uses Markov Random Fields 
(MRF), is proposed by Khayati et al. [6] [7]. They devel-
oped an MS lesion detector by estimating a conditional 
probability density function for each class, which was 
trained using the adaptive mixtures method (AMM). 
For validating their results, in [6] they use a cross-vali-
dation approach where the first MS reader was used as 
the gold standard, leading to very accurate results 
since they achieved an average Dice Similarity 
Coefficient (DSC) of 0.75 [16] [17]. Other proposal was 
developed by Lao et al. [18], where they first perform 
affine registration of T1-w, T2-w PD and FLAIR images 
by maximization of the mutual information [19] and 
skull stripping based on affine registration using the 
BET algorithm [3]. In the training process, the proposed 
method combines T1-w, T2-w, PD and FLAIR in an 
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attribute vector (AV) for each voxel, along with the 
information of the neighboring voxels. A set of manu-
ally segmented scans is used to train a support vector 
machine (SVM) using the AdaBoost method [8] [20]; once 
trained, the SVM outputs, for each voxel, a scalar mea-
sure of abnormality that is binarized by applying a 
tuned threshold to discriminate lesions from normal 
tissue. Although similarity values (e.g., Dice index) 
were not reported, specificity and sensitivity look very 
promising which are also complemented by good 
visual results. Finally, in [21] the proposed method is 
based on Artificial Neural Networks (ANN), and the 
implemented software is freely available online at 
https://med.inria.fr/the-app/downloads. After selecting 
the segmentation option in this interface, the user can 
upload data and interactively click on the MS lesion to 
enhance them. One disadvantage of this software is 
that sometimes the algorithm segments the entire 
white matter region, particularly when MS lesions 
have blurred borders. Despite the diversity of algo-
rithms for MS lesion detection, it is difficult to find one 
that fulfills the requirements of public health institu-
tions, particularly when images are acquired with low 
resolution, few slices, and using a single modality to 
reduce costs. These requirements include border pres-
ervation, robustness to noise and blurred borders, good 
accuracy with single-modality (T2-w or T2-FLAIR) 
images, a reduced number of tuning parameters, and 
an implementation that does not rely on atlases or 
databases.

In this paper, a new method for automatic MS lesion 
segmentation is proposed. The method works with sin-
gle-modality low resolution images, it does not need 
prior information related to anatomical structures or 
user annotations, and it only requires a few parameters 
to be tuned. In order to achieve good border preserva-
tion and robustness, an over-segmentation in super-
pixels (SPs) is performed as the first step [22], followed 
by a post-processing stage to achieve connectedness 
and eliminate spurious SPs produced by noise. Each SP 

is then classified by means of a Gauss-Markov Measure 
Field (GMMF) model [23]. This segmentation approach 
is applied twice: first to isolate the brain region, and a 
second time to segment MS lesions in the brain. This 
paper is organized as follows: Section 1 contains the 
introduction and a description of the goals of this 
work. Section 2 presents the details of the proposed 
segmentation algorithm, which is called SP-GMMF, 
and the methodology for MS lesion segmentation. 
Results from applying the proposed method to the 
analysis of synthetic and real MR images are shown in 
Section 3, with a comparison against a state-of-the-art 
algorithm based on Expectation Maximization (EM). 
Finally, the conclusions of this work are presented in 
Section 4.

MATERIALS AND METHODS
In this proposal, segmentation of MS lesions is 

achieved in two stages: the first stage is to isolate the 
region of interest (in this case, the brain) from the rest 
of the image (skull, meninges, or bone cavities); then, 
in the second stage, MS lesions within the brain region 
are detected. Each stage employs a segmentation algo-
rithm. The segmentation method proposed here is a 
combination of an over-segmentation of the image in 
superpixels using the Simple Linear Iterative Clustering 
(SLIC) [22] and a probabilistic labeling of the superpixels 
by means of the GMMF [23]. Besides the main steps of 
the segmentation process, there are other pre and 
post-processing steps that are important for the effi-
ciency of the proposed algorithm. The details of the 
complete algorithm are described below.

The SLIC method is a clustering algorithm that com-
bines spatial location and intensity information to 
subdivide an image in a relatively small number of 
groups of pixels that have similar color and are spa-
tially coherent, commonly called superpixels [22] [24] [25]. 
This algorithm is a variant of the k-means algorithm 
that uses a reduced search space to form each SP, and 
whose main advantages are high computational speed 
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and border-preserving SPs. The SLIC method works as 
follows: let us define l( ) as the image over the lattice L 
(that is, l(r) ∈ L), and each superpixel is defined as Sk = 
[Ck, Dk] where Ck and Dk are the average intensity and 
the geometric center of the superpixel, respectively. 
Indexes of superpixels are denoted by k, that is k = 1, 2, 
…, K, with K as the number of superpixels over L. The 
initialization of each Dk is given by a regular hexagonal 
grid in L, and Ck as the intensity at pixel site Ck. For 
each superpixel Sk, a square neighborhood of size 2M × 
2M is defined with center at Dk and M = √|L|/K', where 
K' is the desired number of SPs given by the user; as a 
rule of thumb, this parameter can be defined as the 
total number of pixels in the image divided by the area 
(in pixels) of the smallest lesion that is observed; for 
instance, we are using K' = 3000 SPs for all images in 
this study. The actual number of superpixels K will 
vary across all the steps in the algorithm. Only those 
pixels that belong to the neighborhood of Dk can be 
assigned to Sk according to the distance measure:
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 where the first term measures the intensity distance, 
and it is normalized by the dynamic range of the data m, 
which can be computed as m = max (l ( )) - min (l ( )). 
The second term is the spatial distance term and it is 
normalized by the size of the neighborhood. Finally, γ 
is a hyperparameter that weighs the importance 
between both terms. Once every pixel is assigned to 
some Sk, Ck and Dk are updated with the average inten-
sity and spatial position of the pixels that belong to the 
k-th SP, and δk is computed again; this process is iter-
ated until convergence. In our experience, the algo-
rithm converges in 5 to 10 iterations. Although SPs 
adhere well to borders, for an adequate choice of γ, the 
SLIC algorithm can sometimes produce fragmented 
superpixels, which may lead to unconventional neigh-
borhoods for the Markovian Fields process [23]. For that 

reason, a relabeling process by means of connected 
component algorithm is applied [26], so that each con-
nected fragment of a fragmented SP is considered as a 
new, individual superpixel. Once the relabeled field has 
been obtained, small SPs which are often due to noise, 
are fused to the most similar (in terms of average inten-
sity) neighboring superpixel. In our case, a superpixel 
is considered too small when its area is less that 3% of 
the SP average area M2; the 3% threshold was found 
experimentally as the percentage for which the num-
ber of SPs after fusion approximates better the number 
of desired SPs K'. With this fusion, not only the number 
of variables, but also the noise was reduced. Once the 
SPs are obtained, the next step for the segmentation 
process is to classify them with respect to their inten-
sity. For that purpose, we consider that each class is 
defined by a Gaussian distribution of pixel intensities 
with a given mean and variance. Note that, although 
we aim for a binary classification at each stage (brain vs 
non-brain in the first stage, lesion vs non-lesion in the 
second stage), there are several types of tissues repre-
sented in the images; for this reason, multiple classes 
must be considered using the GMMF model [23], the goal 
is to estimate, for each SP Sk, the probability pj(Sk) that 
it belongs to class j, for each j = 1, …, C, where C is the 
number of classes. Under this model, one can obtain 
the probability field for each class j by minimizing the 
following energy function U given by:
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where the first term is a data term which enforces pj 

(k) to be similar to the normalized likelihood between 
the k-th superpixel and the j-th class, which is given by 
gj (k) = (vj (k))/∑i vi (k), where vj (k) is a likelihood func-
tion which measures how well the k-th SP fits in class j. 
Assuming that classes follow a Gaussian distribution, 
the likelihood can be obtained as:
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where μj and σj are the mean and variance of the j-th 
class, respectively. Notice that the μ can be automati-
cally initialized by the k-means method. Additionally, 
there is a hyper-parameter κ which controls the overall 
variance of all classes. The second term is a regulariza-
tion term that promotes the similarity in the neighbor-
hood. The neighborhood Nk for the k-th superpixel can 
be obtained, first, inspecting the borders of the image 
of superpixel labels and then inspecting the image of 
labels; i.e., when a border is detected, the labels in that 
point (SP) are added to its SP neighborhood. Finally, λ 
is a hyper-parameter that weighs the importance 
between terms. To solve (2), one can calculate its 
derivative and equal it to zero to obtain a linear equa-
tion system, which can be iteratively solved by the 
Gauss-Seidel method where the solution of pj (k) is 
given by:
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After each Gauss-Seidel iteration, the means and vari-
ances of all classes are updated with a forgetting factor 
α = 0.2 (i.e. μt → (1-α) μt-1 + αμt, where t is the current 
iteration). This method generally stops until conver-
gence is obtained, but in our experience, it converges 
from 5 to 10 iterations. Once convergence is achieved, 
each superpixel Sk is assigned to the class given by: 
c(Sk) = arg max pj(k). Figure 1 shows the flow chart of 
the SP-GMMF Segmentation proposal.

FIGURE 1. Block diagram of the proposed
method SP-GMMF.

MS Lesion Classification
The SP-GMMF segmentation proposal takes advan-

tages from SLIC and GMMF methods to implement a 
general-purpose segmentation method. In the pro-
posed two-stage algorithm for MS lesion detection, 
which is illustrated in Figure 2, the first stage is ori-
ented to automatically isolate the parenchyma region 
from the rest of the image. For that purpose, this pro-
posal takes the SP-GMMF segmentation c(Sk) of a 
T2-weighted or T2-FLAIR MR brain image (Figures 2a 
and 2b) to obtain a binary mask that represents the 
isolated brain. The fusion of small superpixels into 
bigger ones is depicted in Figure 2c, where some of the 
smaller SPs (circled in green) were fused with a neigh-
boring larger SP, and the final segmentation is shown 
in Figure 2d.

It is well known that in several slices of an MRI 
sequence, the brain region and the background have 
the largest regions in almost every MRI slice. Under 
this assumption and knowing that the background has 
the lowest intensity in the MRI image, the brain mask 
will be obtained by choosing the largest area that does 
not belong to the lowest-intensity class. Notice that, in 
the case of the axial images, this does not always occur 
because the hemispheres might appear disconnected 
from each other. For example, in some supratentorial 
MRI Axial images the ratio of areas between hemi-
spheres will be closest to one because their areas are 
similar (i.e. a ratio threshold above 0.7 may indicate 
that areas are similar). On the other hand, in some 
supratentorial and most infratentorial MRI images 
where the hemispheres are joined into a single region, 
the next largest region will be another structure whose 
area will be significantly smaller than the largest one 
(with a ratio less than 0.7), and thus the algorithm will 
consider it as part of the brain. Once the brain area 
mask has been obtained, a hole-filling algorithm is 
applied to it in order to recover any dark structure 
within the brain that might have been discarded by 
the previous operation. 
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FIGURE 2. Complete process for detection of lesions in the brain. (a) Sagittal MRI input image of 520x459 pixels,
(b) image segmented in superpixels with γ = 0.1 and 1000 desired clusters (resulting in K = 972 clusters), (c) Zoomed

region where small clusters are shown circled in green (top), result of the fusion process where small regions were merged 
(bottom), (d) Result of GMMF segmentation with 10 iterations, λ = 0.1 and k = 0.1, (e) Isolated brain area, (f) Segmentation

of the intensity-adjusted brain region in 5000 super-pixels, resulting in K = 5453 clusters after connected component
were found, (g) GMMF segmentation of the brain region, (h) final result detecting 7 lesions in the white matter

with eccentricity less than 0.9 and area of at least 80. 

This mask, applied to the MRI image, automatically 
isolates the brain for the rest of the image (Figure 2e). 
On the other hand, MS lesions appear in T2 images as 
hyperintense spots; for this reason, an intermediate 
step is to apply a contrast-enhancing intensity adjust-
ment to the isolated brain image to saturate the hyper-
intensities. This operation scales the voxel intensities 
by a factor such that the lowest 3% percentile will be 
saturated to zero, and the highest 3% percentile will be 
saturated to 255 (in an 8-bit grayscale image), which 
will facilitate the MS lesion detection for the next seg-
mentation procedure.

In the second stage, the SP-GMMF segmentation is 
applied to the intensity adjusted brain image with a 
finer resolution of the SPs; that is, a larger desired 
number of SPs K' (Figures 2f and 2g). To obtain the 
binary mask that contains the MS lesions, the algo-
rithm now isolates the regions that correspond to the 
highest intensity class on the segmentation and labels 
them using a connected component analysis, from 
which the area and eccentricity of each spot can be 
also obtained, as well as the number of potential 
lesions found in the image. Finally, a filtering proce-
dure designed to reduce the number of false-positives 
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is applied, in which hyper-intense spots are reported 
as MS lesions (Figure 2g) only if they fulfill the follow-
ing criteria: they must not be located in the external 
border of the brain (which corresponds to gray matter), 
their area must be sufficiently large (approximately 30 
pixels) and they must not to be too eccentric (maxi-
mum eccentricity of 0.85). 

Roughly speaking, each stage of the process performs 
a binary segmentation of the image: in the first stage 
(brain peeling) the interest is to distinguish between 
background/non-background pixels, whereas in the 
second stage the interest is to distinguish between 
lesion and non-lesion pixels. However, at each stage a 
larger number of classes is considered so that a multi-
modal distribution of one of the binary classes (in this 
case non-background and non-lesion) can be modeled 
as the superposition of multiple classes.

EM* Classification
A revision of the state-of-the-art algorithms for MS 

lesion detection shows that a number of methods are 
based on the popular Expectation Maximization (EM) 
algorithm [4]. The main reason for choosing EM is due 
to a good balance between simplicity, popularity and 
good results in this task. In general, this approach 
assumes that intensities belonging to the structures 
on MRI images follow a Rician distribution that can be 
fairly approximated by a Gaussian distribution [13] [14].

Therefore, each image contains a finite mixture of 
Gaussian distributions and thus the goal is to find the 
parameters that define these distributions and their 
proportions in the mixture. Given the number of 
Gaussian mixture components T, and their respective 
parameters θj =(μj , σj) as well as their weight in the mix-
ture βj, for each class j = 1, …, T, the intensity distribu-
tion for any pixel in the image can be expressed as:
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In the first step, all the proportions βj are equal to 1/T, 
corresponding to a uniform distribution of classes; 
then, the parameters of the distributions θj are com-
puted, which is called the Expectation step. After that, 
the Maximization step is applied, which consists in 
fixing the θj and then estimating the weights βj. Both 
steps compose a single Expectation-Maximization 
iteration, and the EM method stops until convergence 
is achieved. Once the algorithm has converged, each 
pixel is classified with the class label which minimizes 
the Mahalanobis distance between the pixel intensity 
and the corresponding Gaussian component. That is, 
c( ) = arg min{(l( ) - μj)2/(2σj

2)}. 

This popular EM classifier can be used to segment MS 
lesions within the proposed two-step framework for 
comparison purposes against the SP-GMMF classifier. 
Additionally, another proposal for MS lesion segmen-
tation based on EM is presented here. Specifically, the 
two-step algorithm can be implemented, first using 
SP-GMMF to segment the brain, and then using EM at 
pixel level classification to segment MS lesions. For 
simplicity, this algorithm will be called EM*. Notice 
that, both EM* and EM methods follow the same MS 
lesion classification of the proposed SP-GMMF method. 
In other words, EM* and EM methods, in the first step 
of the algorithm obtain a mask of the brain, then an 
intensity adjustment operation is applied to the 
masked region, and finally in the second step, the EM 
algorithm is applied to the intensity-adjusted brain, 
and the same discrimination criteria is applied to 
obtain the MS lesions. 

RESULTS AND DISCUSSION
For comparison purposes, both SP-GMMF and EM* 

were tested and compared against EM using both syn-
thetic and real brain MRI images. A brief summary of 
the details for each algorithm is shown in Table 1. 
Experimental results were obtained using the 
BrainWeb dataset [27] and several MRI images (axial 
and sagittal sequences) from two subjects positively 
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diagnosed with MS of the Central Hospital in San Luis 
Potosí, México. Accuracy and reliability of the results 
were primarily measured using the Dice Similarity 
Coefficient (DSC) defined as:
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where R is the estimated set of pixels corresponding 
to MS lesions obtained from the segmentation process, 
and GT corresponds to the Ground Truth. In the case of 
the BrainWeb set the ground truth was available on the 
BrainWeb site, and for real images, the GTs were man-
ually obtained by one expert MS physician from the 
Central Hospital and validated by another expert from 
the same institution. In addition to DSC, the Sensitivity 
(SEN) and the average absolute difference between the 
number of lesions (ADNL) were computed as well.

TABLE 1. Block diagram of the proposed
method SP-GMMF.Tabla	1	

	
Algorithm Brain 

Peeling 
WML 
Detection 

Resolution 

EM EM EM Pixel 

EM* SP-GMMF EM Pixel 

SP-GMMF SP-GMMF SP-GMMF Superpixel 

	
Tabla	2	

	
Dice Similarity Coefficient 

 Methods All INU 0% INU 20% INU 

KW All methods 0.0000 0.0000 0.0390 

KS SP vs EM 0.0000 0.0000 0.0120 

 SP vs EM* 0.1614 0.6860 0.2628 

 EM vs EM* 0.0000 0.0000 0.1398 

MW SP vs EM 0.0000 0.0000 0.0089 

 SP vs EM* 0.1479 0.3513 0.1045 

 EM vs EM* 0.0000 0.0000 0.0504 

Sensitivity 

 Methods All INU 0% INU 20% INU 

KW All methods 0.0000 0.0000 0.0093 

KS SP vs EM 0.0000 0.0000 0.0120 

 SP vs EM* 0.0996 0.9942 0.0299 

 EM vs EM* 0.0000 0.0000 0.0120 

MW SP vs EM 0.0000 0.0000 0.0100 

 SP vs EM* 0.2743 0.3706 0.2100 

 EM vs EM* 0.0000 0.0000 0.0017 

	
Tabla	3	

	
 S1 S2 

A&S A A 

D
SC

 

EM 0.577±0.101 0.476±0.090 0.270±0.091 

EM* 0.610±0.076 0.479±0.084 0.401±0.099 

SP-GMMF 0.697±0.007 0.576±0.081 0.454±0.081 

SE
N

 

EM 0.592±0.136 0.576±0.116 0.559±0.115 

EM* 0.593±0.086 0.569±0.091 0.559±0.115 

SP-GMMF 0.719±0.039 0.651±0.099 0.574±0.108 

A
D

N
L  

EM 3.25±0.48 (44) 1.50±0.46 (21) 2.00±0.63 (19) 

EM* 3.75±1.11 (40) 1.25±0.45 (17) 1.125±0.58 (24) 

SP-GMMF 2.25±0.63 (30) 1.75±0.37 (15) 1.5±0.38 (23) 

	
	

	
	
	
	
	

The parameters for the first step (brain peeling) with 
SP-GMMF and EM* methods were: K' = 1000 desired 
number of SPs, γ = 0.1, κ = 0.1 and λ = 0.1 with 10 Gauss-
Seidel iterations. The number of classes was C = 5, and 
their means were initialized by the k-means algo-
rithm; the class with lowest mean intensity corre-
sponds to the background, while the other classes 
correspond to the different anatomical structures in 
the image; however, it is important to recall that in 
this stage of the process we are interested in the larg-
est connected non-background region, so the 
non-background classes are merged into a single class 
for this purpose. For the MS lesion detection stage, the 
parameters for the SP-GMMF and EM* were K' = 5000 
for a finer resolution, κ = 0.1, λ = 2 and γ = 5 , with C = 7, 

with class means also initialized by the k-means algo-
rithm; here, the class with highest mean intensity is 
considered to represent MS lesions. With respect to the 
EM method, the only parameter is the number of the 
classes, which we set C = 5 for the brain peeling stage 
and C = 7 for the MS lesion detection stage; class 
means are also initialized by k-means. Finally, in the 
False-Positive discrimination step, the criteria were a 
minimum area of 30 pixels and minimum eccentricity 
of 0.85 for all the algorithms. All parameters, includ-
ing the number of classes considered at each stage, 
were optimized experimentally to maximize the DSC 
for real images from Subject 2 (see below).

Results from synthetic images
Data for these experiments consisted on simulated 

181×217×181 T2-weighted MRI volumes from the MS 
Lesion Brain Database in Brain Web [27] with slice thick-
ness of 1mm, noise levels of 0%, 1%, 3%, 5%, 7% and 
9%, and intensity non-uniformity (INU) of 0% and 
20%. A total of 12 volumes were used for the experi-
ment. The experiment with synthetic MRI images was 
designed to test the robustness to noise and INU. For 
evaluation purposes, experiments were performed 
selecting only the four slices that contain the highest 
number of MS lesions, corresponding to slices 31 to 34. 
BrainWeb does not provide T2-FLAIR images so T2 
images were used instead for this experiment; how-
ever, the ventricles appear with high intensity in T2 
images and are easily confounded with MS lesions; for 
this reason, only four slices that do not contain the 
ventricles were used. 

FIGURE 3. Application of the EM and SP-GMMF
algorithms to slice 32 of the BrainWeb volume. 
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For illustration purposes, Figure 3 shows the results 
from the application of EM and SP-GMMF to slice 32 of 
the BrainWeb volume, where yellow regions corre-
spond to true positive estimations, green regions cor-
respond to false negatives and red regions correspond 
to false positives. Average results for these images are 
summarized in Figure 4.

FIGURE 4. Average results of DSC and Sensitivity (SEN)
from applying the EM, EM* and SP-GMMF methods on

the BrainWeb images (slices 31 to 34).

Under low noise conditions (noise level <= 3%) and 
uniform intensity levels (INU = 0%), SP-GMMF achieves 
DSC values between 0.49 and 0.79 in average. However, 
when INU is increased to 20%, DSC values decrease 
approximately by a half, except in the case for 1% 
noise, in which the DSC values are maintained. 

Additionally, a statistical analysis has been performed 
in order to determine if there exist significant differ-
ences in the performance indices (DSC and Sensitivity) 
between the different methods under study.

For this analysis, results for all noise levels were 
grouped so that each group consists of 24 data points 
(4 slices with 6 noise levels) for each method and INU 
level. 

First, the Kruskal-Wallis non-parametric test was 
performed to see if there were differences in DSC or 
Sensitivity among the three methods for different INU 
levels; in all cases, significant differences (p < 0.05) 
were found. Post-hoc testing was then performed 
using the Kolmogorov-Smirnov and Mann-Whitney U 
tests, in order to determine which methods showed 
performance differences. The resulting p-values are 
summarized in Table 2.

TABLE 2. Results (p-values) from the Kruskal-Wallis
(KW), Kolmogorov-Smirnov (KS) and Mann-Whitney

U (MW) statistical tests to determine the existence of 
significant differences in performance measures (DSC

and Sensitivity) between the methods under study
(SP-GMMF, EM and EM*). P-values lower than 0.05 are 

shown in bold face, indicating significant differences 
among the methods in the corresponding row.

Tabla	1	
	

Algorithm Brain 
Peeling 

WML 
Detection 

Resolution 

EM EM EM Pixel 

EM* SP-GMMF EM Pixel 

SP-GMMF SP-GMMF SP-GMMF Superpixel 

	
Tabla	2	

	
Dice Similarity Coefficient 

 Methods All INU 0% INU 20% INU 

KW All methods 0.0000 0.0000 0.0390 

KS SP vs EM 0.0000 0.0000 0.0120 

 SP vs EM* 0.1614 0.6860 0.2628 

 EM vs EM* 0.0000 0.0000 0.1398 

MW SP vs EM 0.0000 0.0000 0.0089 

 SP vs EM* 0.1479 0.3513 0.1045 

 EM vs EM* 0.0000 0.0000 0.0504 

Sensitivity 

 Methods All INU 0% INU 20% INU 

KW All methods 0.0000 0.0000 0.0093 

KS SP vs EM 0.0000 0.0000 0.0120 

 SP vs EM* 0.0996 0.9942 0.0299 

 EM vs EM* 0.0000 0.0000 0.0120 

MW SP vs EM 0.0000 0.0000 0.0100 

 SP vs EM* 0.2743 0.3706 0.2100 

 EM vs EM* 0.0000 0.0000 0.0017 

	
Tabla	3	

	
 S1 S2 

A&S A A 

D
SC

 

EM 0.577±0.101 0.476±0.090 0.270±0.091 

EM* 0.610±0.076 0.479±0.084 0.401±0.099 

SP-GMMF 0.697±0.007 0.576±0.081 0.454±0.081 

SE
N

 

EM 0.592±0.136 0.576±0.116 0.559±0.115 

EM* 0.593±0.086 0.569±0.091 0.559±0.115 

SP-GMMF 0.719±0.039 0.651±0.099 0.574±0.108 

A
D

N
L  

EM 3.25±0.48 (44) 1.50±0.46 (21) 2.00±0.63 (19) 

EM* 3.75±1.11 (40) 1.25±0.45 (17) 1.125±0.58 (24) 

SP-GMMF 2.25±0.63 (30) 1.75±0.37 (15) 1.5±0.38 (23) 

	
	

	
	
	
	
	

Furthermore, in order to determine the effect of 
intensity non-uniformity, a paired Wilcoxon test was 
performed to determine if there exist significant dif-
ferences between INU levels 0% and 20% for each 
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method. Significant differences in DSC values were 
found for EM* (p=0.009) and SP-GMMF (p=0.002), 
and also in Sensitivity for EM* (p=0.036) and 
SP-GMMF (p=0.002, whereas EM did not show signif-
icant differences.

Results from real images
Another set of tests was performed with T2-FLAIR 

volumes from two MS patients acquired at the Central 
Hospital in San Luis Potosí, México, with a 1.5T MRI 
scanner. Images from Subject 1 (S1) were sampled 
approximately at 6.1 mm per slice, with each slice hav-
ing a size of 512×512 pixels. For this test, four slices 
with visible MS lesions were selected: two axial and 
two sagittal.

The data set from the second subject (S2) is com-
prised by eight 256×256 axial images (A) and eight 
288×288 sagittal images (S). Average results from the 
segmentation of these images using the methods 
under testing (EM, EM* and SP-GMMF) are shown in 
Table 3. Figure 5 shows boxplots of the DSC and SEN 
results.

TABLE 3. Average results (±standard error of mean) for
real T2-FLAIR brain MRI images. Computed indices are: 
Dice Similarity Coefficient (DSC), Sensitivity (SEN) and 

Absolute Difference in Number of Lesions (ADNL – with
the number of total lesions found shown in parentheses). 

Best results for each column are shown in bold face.

Tabla	1	
	

Algorithm Brain 
Peeling 

WML 
Detection 

Resolution 

EM EM EM Pixel 

EM* SP-GMMF EM Pixel 

SP-GMMF SP-GMMF SP-GMMF Superpixel 

	
Tabla	2	

	
Dice Similarity Coefficient 

 Methods All INU 0% INU 20% INU 

KW All methods 0.0000 0.0000 0.0390 

KS SP vs EM 0.0000 0.0000 0.0120 

 SP vs EM* 0.1614 0.6860 0.2628 

 EM vs EM* 0.0000 0.0000 0.1398 

MW SP vs EM 0.0000 0.0000 0.0089 

 SP vs EM* 0.1479 0.3513 0.1045 

 EM vs EM* 0.0000 0.0000 0.0504 

Sensitivity 

 Methods All INU 0% INU 20% INU 

KW All methods 0.0000 0.0000 0.0093 

KS SP vs EM 0.0000 0.0000 0.0120 

 SP vs EM* 0.0996 0.9942 0.0299 

 EM vs EM* 0.0000 0.0000 0.0120 

MW SP vs EM 0.0000 0.0000 0.0100 

 SP vs EM* 0.2743 0.3706 0.2100 

 EM vs EM* 0.0000 0.0000 0.0017 

	
Tabla	3	

	
 S1 S2 

A&S A A 

D
SC

 

EM 0.577±0.101 0.476±0.090 0.270±0.091 

EM* 0.610±0.076 0.479±0.084 0.401±0.099 

SP-GMMF 0.697±0.007 0.576±0.081 0.454±0.081 

SE
N

 

EM 0.592±0.136 0.576±0.116 0.559±0.115 

EM* 0.593±0.086 0.569±0.091 0.559±0.115 

SP-GMMF 0.719±0.039 0.651±0.099 0.574±0.108 

A
D

N
L 

EM 3.25±0.48 (44) 1.50±0.46 (21) 2.00±0.63 (19) 

EM* 3.75±1.11 (40) 1.25±0.45 (17) 1.125±0.58 (24) 

SP-GMMF 2.25±0.63 (30) 1.75±0.37 (15) 1.5±0.38 (23) 

	
	

	
	
	
	
	

 Figure 6 shows the results of the EM* and SP-GMMF 
algorithms for a few selected slices. Results are shown 
using the green channel for the true lesions and the 
red channel for the estimated lesions, so that yellow 
regions correspond to true positives, and green regions 
to false negatives. Statistical tests were also performed 
to determine if significant differences exist in the per-
formance measures (DSC, Sensitivity and ADNL) 
among the three methods. In this case, however, the 
Kruskal-Wallis test did not report any evidence of sig-
nificative differences; therefore, no post-hoc tests 
were applied.

Discussion
Experiments to test the accuracy of the proposed 

algorithm were perform using both synthetic and real 
MRI images of MS. The statistical analysis of the results 
for synthetic BrainWeb images suggest that INU highly 
affects the performance of the two proposed methods, 
SP-GMMF and EM*, since the DSC and sensitivity were 
strongly reduced when INU was set to 20%. 

FIGURE 5. DSC and Sensitivity for both test subjects
using the EM, EM* and SP-GMMF.
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FIGURE 6. Example of the results obtained with EM* and SP-GMMF. Yellow regions correspond to the true positive 
estimations, where the automatic segmentation coincides with the expert segmentation. Green regions correspond
to false negatives (lesions that the automatic methods did not detect), and Red regions correspond to false positives 

(regions that the automatic algorithm incorrectly reports as lesions).

With respect to the noise level, SP-GMMF shows a 
more consistent behavior with a mild decrease in DSC 
and Sensitivity as the noise increases, suggesting that 
the proposed algorithm is fairly robust to noise. On the 
other hand, it is difficult to characterize the behavior 

of EM and EM* under noisy conditions as their results 
are highly variable, but it seems that the pixel-wise 
approach employed by EM* can be of benefit in the 
lesion segmentation step under higher noise levels. A 
statistical analysis of the performance indices, whose 
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TABLE 4. DSC values reported for different MS
lesion detection algorithms for synthetic (BrainWeb)
and real MRI images. For each method, it is indicated

if the method requires multi-modal images (T1, T2,
PD/FLAIR), and if it requires prior information

in the form of an atlas or user assistance.Tabla	4	
	

Method 
DSC for 

BrainWeb 
Images 

DSC 
for Real 
Images 

Requires 
multiple 
modality 

Requires 
prior data 

TOADS [12] 0.79 0.63 X X 

Graph Cuts [28] ~0.7 0.63 X  

AWEM [30] 0.7  X  

CGMM+CE [31] 0.78  X X 

Khayati [6] [7]  0.75   

SP-GMMF 0.49 - 0.79 
(low noise) ~0.6   

	

results are summarized in Table 2, shows that, in gen-
eral, EM has a significantly lower performance than 
EM* and SP-GMMF, possibly due to errors in the brain 
peeling stage. On the other hand, no significant differ-
ences between EM* and SP-GMMF were found.

In the literature, some methods are applied to the 
BrainWeb data [24] [28] [29] [30] [31] with a high performance 
in DSC. However, their good results are not clearly 
explained, for example, some of them do not mention 
the slice (or slices) used for the tests. In [29], experi-
ments using T1 and T2 images with 3% and 5% of 
noise are shown, obtaining a DSC of 0.782 in the best 
case. These experiments illustrate the main advantage 
of using prior information from an atlas; in general, 
using an atlas is a good option, however, algorithms 
without an atlas could reach similar performance; for 
instance, in [29] they report a DSC = 0.74 with an atlas 
and DSC = 0.75 without atlas. Moreover, they do not 
indicate which atlas is used or how the subject brain is 
registered to the atlas, which suggests they might have 
used the healthy BrainWeb data as atlas in order to 
avoid the registration process; in that case, applying 
the method proposed in [29] to real images would 
require further pre-processing steps which could 
introduce additional errors. In [31], the authors show a 
methodology based in Gauss-Markov model followed 
by curve evolution. Experiments were achieved using 
61 slices (from the 60th to the 120th) using the T1, T2 
and PD images. They obtained very good results since 
DSC is over 0.78 for 3% to 9% of noise. The results 
obtained by Garcia-Lorenzo et al. [28] present an inter-
esting behavior for INU = 0%. The method yields a 
lower DSC = 0.24 for low noise levels (1%), increases its 
performance for 3% and 5% of noise (DSC of 0.65 and 
0.79 respectively), and then decreases at 7% and 9% 
with DSC = 0.6 and DSC = 0.25, respectively. These 
results, along with our own results from Figure 4, sug-
gest that some algorithms perform better when there 
is a mild amount of noise in the images. For instance, 
the EM and EM* algorithms estimate the mean and 

standard deviation of gray intensities for each class; in 
the absence of noise, the standard deviation will 
approach zero, which may cause numerical instabili-
ties; on the other hand, the algorithm in [28] is gradi-
ent-based and may also be affected by untextured, 
noiseless regions. Table 4 summarizes the DSC results 
for various methods mentioned above, along with 
SP-GMMF for comparison purposes.

Despite the sensitivity to INU and noise, experiments 
with real images suggest that the proposed methods 
can be used for a real application with encouraging 
results. Figure 5 shows the boxplots of the DSC and the 
sensitivity for the EM, EM* and the SP-GMMF meth-
ods. For Subject 1, SP-GMMF shows better DSC and 
sensitivity than the EM based methods. For Subject 2, 
the results show a considerable variability between 
slices; in general, SP-GMMF presents a higher median 
DSC but a lower sensitivity in the case of the sagittal 
images. Table 3 summarizes the average DSC, sensitiv-
ity and ADNL of the proposed methods, where the best 
result is highlighted in boldface. In this case, the best 
DSC performance is obtained by the SP-GMMF method 
with a competitive average DSC of 0.6968 for Subject 1 
and average DSC of 0.5762 and 0.4544 for Subject 2 
axial and sagittal images, respectively. SP-GMMF also 
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presents the highest average sensitivity. Nevertheless, 
the best ADNL is obtained by the EM* method; this is 
interesting because the number of lesions is one of the 
main clinical indices to characterize the progress of 
the MS disease. To our knowledge, only a few works in 
the literature report results with real images. In [30], 
they report results from three different patients for 
which they can obtain DSC values of 82%, 56%, and 
52%, respectively. In [28], experiments with 10 patients 
yield DSC values between 40% and 75%. Considering 
that the authors of these works use multi-modal 
images (combining T1-w, T2-w, FLAIR and PD) with 
high resolution, we consider our results (DSC between 
45% and 69%) to be competitive for low-resolution 
single modality imaging.

Finally, we discuss the differences in the false positive 
lesions reported by the proposed methods, as shown in 
Figure 6. Ideally, the algorithm should report no false 
negatives while keeping the number of false positives 
as low as possible. For subject one, SP-GMMF shows 
more accuracy because there are more yellow regions 
(true positives) and less red regions (false positives) 
than the segmentations obtained by the EM*, particu-
larly in the sagittal image. For subject two, the advan-
tage of SP-GMMF versus EM* is not clearly evident as 
they show almost the same yellow regions. Nevertheless, 
a detailed inspection of these images suggests that the 
EM* segmentation tends to generate a higher number 
of false positive (red regions), possibly due to the lack 
of regularization, such as the one induced by using 
superpixels, at the MS lesion detection stage. 

CONCLUSIONS
An automatic algorithm to detect and segment 

Multiple Sclerosis lesions from T2 MR images was pre-
sented. The proposed method is based on a segmenta-
tion process where the image is subdivided into con-
nected clusters (superpixels) which are then labeled 
according to their average intensity using Gauss-
Markov Measure Field model. The segmentation pro-

cess is applied two-fold: first to isolate the brain 
region, and then to detect hyperintense spots within 
the brain region. Finally, some of the false positives 
are discarded depending on their area and eccentric-
ity. An experimental test using synthetic images from 
the BrainWeb database shows that the proposed seg-
mentation has strong advantages against the popular 
EM method, even under noisy conditions. While 
SP-GMMF is fairly robust to noise, it is very sensitive to 
non-uniformity, so additional pre-processing might be 
required for some images to deal with the spatial 
intensity variations. In the case of real MRI images, 
SP-GMMF maintains its advantages against EM, 
although using EM for detecting hyperintense spots 
(once the brain region has been isolated) has shown 
benefits, such as a more accurate lesion count. In brief, 
the SP-GMMF produces competitive results with sin-
gle-modality, low-resolution images; it is also fully 
automatic and does not depend on prior anatomic 
information. Thus, SP-GMMF and EM* could be ade-
quate image processing tools for low-resource institu-
tions. We are currently working on implementing the 
proposed algorithms as part of an interactive applica-
tion that can be used for clinical purposes, where an 
expert physicist can manually refine the segmentation 
by setting post-processing parameters in real-time and 
deleting spurious lesions, and then obtain indices 
such as the number and volume of lesions.

AUTHOR CONTRIBUTIONS
A.R. Contributed to the implementation of the pro-

posed methodology and in conducting the experiments. 
A.A. Contributed in the direction of the project and 
development of the methodology. M.O.M. Contributed 
in the experimental design, validation of the results, 
reviewing the manuscript and management activities. 
E.R.A.S Contributed in the development of the method-
ology, validation of results and reviewing the manu-
script. I.R.L. Contributed in the raise of the problem, 
development of the methodology, data acquisition and 
expert validation of the real cases (ground truth).



REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA | Vol. 41 | No. 3 | SEPTIEMBRE - DICIEMBRE 202054

REFERENCES

[1]  Benito-León J, Morales JM, Rivera-Navarro J, Mitchell AJ. A review 
about the impact of multiple sclerosis on health-related quality of 
life. Disability and Rehabilitation. 2003;25(23):1291-1303. 
https://doi.org/10.1080/09638280310001608591

[2]  Manjón JV, Coupé P. volBrain: An Online MRI Brain Volumetry 
System. Frontiers in Neuroinformatics. 2016; 10:30. 
https://doi.org/10.3389/fninf.2016.00030

[3]  Smith SM. Fast robust automated brain extraction.  Human Brain 
Mapping. 2002;17(3):143-155. 
https://doi.org/10.1002/hbm.10062

[4]  Mortazavi D, Kouzani AZ, Soltanian-Zadeh H. Segmentation of 
multiple sclerosis lesions in MR images: a review. Neuroradiology. 
2012; 54(4): 299-320. 
https://doi.org/10.1007/s00234-011-0886-7

[5]  Garcia-Lorenzo D, Francis S, Narayanan S, Arnold DL, Collins DL. 
Review of automatic segmentation methods of multiple sclerosis 
white matter lesions on conventional magnetic resonance imaging. 
Medical Image Analysis. 2013;17(1):1-18. 
https://doi.org/10.1016/j.media.2012.09.004

[6]  Khayati R, Vafadust M, TowhidkhahF , Nabavi M. Fully automatic 
segmentation of multiple sclerosis lesions in brain MR FLAIR 
images using adaptive mixtures method and markov random field 
model.  Computers in Biolology and Medicine. 2008;38(3): 379-390. 
https://doi.org/10.1016/j.compbiomed.2007.12.005

[7]  Khayati R, Vafadust M, Towhidkhah F, Nabavi M. A novel method 
for automatic determination of different stages of multiple 
sclerosis lesions in brain MR FLAIR images. Computerized Medical 
Imaging and Graphics. 2008;32(2):124-133. 
https://doi.org/10.1016/j.compmedimag.2007.10.003

[8]  Vapnik VN. An overview of statistical learning theory. IEEE 
Transactions on Neural Networks. 1999;10(5): 988-999. 
https://doi.org/10.1109/72.788640

[9]  Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC. Morphometric 
analysis of white matter lesion in MR images: method and valida-
tion. IEEE Transactions on Medical Imaging. 1994;13(4):716-724. 
https://doi.org/10.1109/42.363096

[10]  de Boer R, van der Lijn F, Vrooman HA, Vernooij MW, Ikram MA, 
Breteler MMB, Niessen WJ. Automatic segmentation of brain tissue 
and white matter lesions in MRI. In 4th IEEE International 
Symposium on Biomedical Imaging: From Nano to Macro. 
Arlington: IEEE;2007:652-655. 
https://doi.org/10.1109/ISBI.2007.356936

[11]  Awad M, Chehdi K, Nasri A. Multicomponent Image Segmentation 
Using a Genetic Algorithm and Artificial Neural Network. IEEE 
Geoscience and Remote Sensing Letters. 2007; 4(4): 571-575. 
https://doi.org/10.1109/LGRS.2007.903064

[12]  Shiee N, Bazin P-L, Ozturk A, Reich DS, Calabresi PA, Pham DL. A 
topology-preserving approach to the segmentation of brain images 
with multiple sclerosis lesions. NeuroImage. 2010;49(2):1524-1653. 
https://doi.org/10.1016/j.neuroimage.2009.09.005

[13]  Aït-Ali LS, Prima S, Hellier P, Carsin B, Edan G, Barillot C. STREM: 
A Robust Multidimensional Parametric Method to Segment MS 
Lesions in MRI. In Duncan JS, Gerig G (eds.). Medical Image 
Computing and Computer-Assisted Intervention MICCAI. Berlin: 
Sprinfer.2005;3749:409-416. 
https://doi.org/10.1007/11566465_5

[14]  Dempster AP, Laird NM, Rubin DB, Maximum Likelihood from 
Incomplete Data via EM Algorithm. Journal of the Royal Statistical 
Society. 1977;39(1):1-22. 
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

[15]  García-Lorenzo D, Prima S, Morrissey SP, Barillot C. A robust 
Expectation-Maximization algorithm for Multiple Sclerosis lesion 
segmentation. MICCAI Workshop: 3D Segmentation in the Clinic: A 
Grand Challenge II, MS lesion segmentation. 2008:1-8.

[16]  Bartko JJ. Measurement and Reliability: Statistical Thinking 
Considerations. Schizophrenia Bulletin. 1991;17(3):483-489. 
https://doi.org/10.1093/schbul/17.3.483

[17]  Powers D. Evaluation: from Precision, Recall and F-measure to 
ROC, Informedness, Markedness and Correlation. Journal Machine 
Learning Technologies. 2011;2(1):37-63.

[18]  Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, Bryan RN, 
Davatzikos C. Computer-Assisted Segmentation of White Matter 
Lesions in 3D MR images using Support Vector Machine.  Academic 
Radiology. 2008;15(3):300-313. 
https://doi.org/10.1016/j.acra.2007.10.012

[19]  Viola P, Wells WM. Alignment by Maximization of Mutual 
Information. International Journal of Computer Vision. 
1997;24(2):137-154. https://doi.org/10.1023/A:1007958904918

[20]  Wang XY, Wang T, Bu J. Color image segmentation using pixel wise 
support vector machine classification. Pattern Recognition. 
2011;44(4):777-787. https://doi.org/10.1016/j.patcog.2010.08.008

[21]  Toussaint N, Souplet JC, Fillard P. MedINRIA: Medical Image 
Navigation and Research Tool by INRIA. In Proceedings of MICCAI  
Workshop on Interaction in Medical Image Analysis and 
Visualization. Brisbane: MICCAI. 2007;4791:1-8.

[22]  Achata R, Shaji A, Smith K, Lucchi A, Fua P,  Süsstrunk S. SLIC 
Superpixels Compared to State-of-the-Art Superpixel Methods. 
IEEE Transactions on Pattern Analysis Machine Intelligence. 
2012;34(11):2274-2282. https://doi.org/10.1109/TPAMI.2012.120

[23]  Marroquin JL, Velasco FA, Rivera M, Nakamura M. Gauss-Markov 
measure field models for low-level vision. IEEE Transactions on 
Pattern Analysis Machine Intelligence. 2001;23(4):337-348. 
https://doi.org/10.1109/34.917570

[24]  Cheng J, Liu J,  Xu Y, Yin F, Kee-Wong DW, Tan NM, Tao D, Cheng 
CY, Aung T, Wong TY. Superpixel Classification Based Optic Disc 
and Optic Cup Segmentation for Glaucoma Screening. IEEE 
Transactions on Medical Imaging. 2013;32(6):1019-1032. 
https://doi.org/10.1109/TMI.2013.2247770



REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA | Vol. 41 | No. 3 | SEPTIEMBRE - DICIEMBRE 202055

[25]  Ren CY, Reid I. gSLIC: a real-time implementation of SLIC 
superpixel segmentation.  Technical Report [Internet]. 201:1-6. 
Available from: http://www.carlyuheng.com/pdfs/gSLIC_report.pdf.

[26]  Haralick RM, Shapiro LG. Computer and Robot Vision. Boston, 
United States: Addison-Wesley Longman Publishing;1992:28-48p.

[27]  Cocosco CA, Kollokian V, Kwan KS, Pike GB, Evan AC. BrainWeb: 
Online Interface to a 3D MRI Simulated Brain Database. 
NeuroImage. 1997;5:425. 

[28]  García-Lorenzo D, Lecoeur J, Arnold DL, Collins DL, Barillot C. 
Multiple Sclerosis Lesion Segmentation Using an Automatic 
Multimodal Graph Cuts. In Yang G-Z, Hawkes D, Rueckert D, Noble 
A, Taylor C (eds.). Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2009. Berlin, Heidelberg: Springer 
Berlin Heidelberg; 2009:584-591. 
https://doi.org/10.1007/978-3-642-04271-3_71

[29]  Bricq S, Collet Ch, Armspach JP. Lesions detection on 3D brain MRI 
using trimmed likelihood estimator and probabilistic atlas. 2008 
5th IEEE International Symposium on Biomedical Imaging: From 
Nano to Macro. Paris; IEEE. 2008:93-96. 
https://doi.org/10.1109/ISBI.2008.4540940

[30]  Forbes F, Doyle S, Garcia-Lorenzo D,  Barillot C, Dojat M. Adaptive 
weigthed fusion of multiple MR sequences for brain lesion 
segmentation. 2010 IEEE International Symposium on Biomedical 
Imaging: From Nano to Macro. Rotterdam: IEEE. 2010:69-72. 
https://doi.org/10.1109/ISBI.2010.5490413

[31]  Freifeld O, Greenspan H, Goldberger J. Multiple Sclerosis Lesion 
Detection Using Constrained GMM and Curve Evolution. 
International Journal of Biomedical Imaging. 2009: 715124. 
https://doi.org/10.1155/2009/715124


