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ABSTRACT 
Within the framework of Systems Biology, this paper proposes the complex network theory as a fundamental tool 
for determining the most critical dynamic variables in complex biochemical mechanisms. The Belousov-Zhabotins-
ky reaction is proposed as a study model and as a complex bipartite network. By determining the structural property 
authority, the most relevant dynamic variables are specified, and a mathematical model of the Belousov-Zhabotins-
ky reaction is obtained. The bidirectional coupling of the proposed model was made with other models associated 
with biological processes, finding synchronization phenomena when varying the coupling parameter. The time 
series obtained from the numerical solution of the coupled models were used to construct their images using the 
Gramian Angular Field technique. In the end, a supervised learning tool is proposed for the classification of the type 
of coupling by analyzing the images, obtaining score percentages above 94%. The hereby proposed methodology 
could be extended to the experimental field in order to determine anomalies in the coupling and synchronization of 
different physiological oscillators.
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RESUMEN
En el marco de la Biología de sistemas, se propone en el presente trabajo a la teoría de redes complejas como una 
herramienta fundamental para la determinación de las variables dinámicas más importantes en mecanismos bio-
químicos complejos. Se emplea como modelo de estudio la reacción de Belousov-Zhabotinsky y se plantea como 
una red compleja bipartita. Mediante la determinación de la propiedad estructural autoridad, se determinan las 
variables dinámicas con mayor relevancia y se obtiene un modelo matemático de la reacción de Belousov-Zhabo-
tinsky. Se realizó el acoplamiento bidireccional del modelo planteado con otros modelos asociados a procesos bio-
lógicos, encontrándose fenómenos de sincronización al variar el parámetro de acoplamiento. Las series de tiempo 
obtenidas de la solución numérica de los modelos acoplados se emplearon para construir sus respectivas imágenes 
mediante la técnica de campo angular gramiano. Finalmente, se propone una herramienta de aprendizaje supervi-
sado para la clasificación del tipo de acoplamiento mediante el análisis de las imágenes, obteniéndose porcentajes 
de exactitud por encima del 94%. La metodología propuesta en el presente trabajo podría extenderse y trasladarse 
al campo experimental con la finalidad de determinar anomalías en el acoplamiento y sincronización de distintos 
osciladores fisiológicos. 

PALABRAS CLAVE: Biología de sistemas; Reacción BZ; Redes Complejas; Aprendizaje supervisado; Campo angular gramiano
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INTRODUCTION
It is possible to study any physiological process 

through an intricate network of biochemical reaction 
mechanisms from the systems biology paradigm [1] [2] [3] 

[4], such mechanisms are responsible for regulating a 
wide variety of processes of utmost importance for 
life, through complex positive and negative feedback 
systems [5] [6]. A prominent example of negative feed-
back is the thyroid hormone regulatory mechanism [7] 

carried out by either thyroid cells or the leptin-insulin 
axis [8], which is strongly related to metabolic pro-
cesses. Discrepancies in these feedback mechanisms 
can lead to multiple pathologies at the systemic level 
[7]. With the development of experimental tools for 
studying such complex systems, the need to under-
stand the underlying dynamics of these regulatory 
mechanisms also arose, so biochemists undertook the 
task of studying the chemistry of these mechanisms to 
determine the kinetic parameters of the reactions par-
ticipating in these processes. Meanwhile, biophysicists 
had to translate these biochemical processes to math-
ematical models using tools based on Dynamical 
Systems Theory (DST) and the discoveries made by 
biochemists [9] [10] [11].

B. Belousov was a Russian biophysicist who pio-
neered in the study of complex regulatory mecha-
nisms present in biochemical processes at an experi-
mental level. In 1950 he was given the task of propos-
ing a reaction mechanism analogous to the Krebs cycle 
to study feedback processes [12] [13] [14]. Belousov con-
ceived a chemical mixture made essentially of citric 
acid, bromate ions, and cerium ions in an acid medium 
under constant agitation [13]. During the reaction, 
Belousov observed that the mixture changed from 
being transparent to a yellow hue and vice versa. The 
phenomenon occurred time after time, being reminis-
cent of the Krebs cycle feedback processes. 
Nevertheless, his work was never officially published 
because reviewers concluded that the process was 
caused by mixture impurities, and that the phenome-

non violated the natural laws of thermodynamics [13] 

[14]. Years later, Prigogine defined the basis of thermo-
dynamics of irreversible processes [12] [13] [14].

Later on, another Russian biophysicist, A. Zhabotisky 
resumed Belousov’s work. He replaced citric acid with 
malonic acid and cerium ions with iron ions to visual-
ize chemical species concentration-oscillations obtain-
ing a solution that shifted from red to blue and vice 
versa [12]. This chemical mechanism was thus named 
the Belousov-Zhabotinsky (BZ) reaction [12] [13] [14]. The 
work of Belousov and Zhabotinsky set the basis for the 
study of oscillatory biochemical processes [14].

In 1972, Field, Köros and Noyes proposed the first 
mathematical model in differential equations that 
described the underlying dynamics of the BZ reaction 
(FKN Model) and laid the groundwork for mathemati-
cal modeling of chemical mechanisms with oscilla-
tory behaviors [15] [16]. This opened a vast field of study 
for the development of mathematical models in the 
area of systems biology [17]. The FKN model is extremely 
robust; however, it considers many chemical species 
as dynamic variables of the system, which makes it 
difficult to handle from an analytical point of view [15] 

[16]. To solve this problem, in 1974, Field and Noyes 
proposed a much simpler mechanism to describe 
reaction dynamics based on the FKN model, also 
known as Oregonator because it was created at the 
University of Oregon. However, said mathematical 
model was constructed from a reaction mechanism 
that consists of only five irreversible chemical reac-
tions and that describes the BZ reaction qualitatively 

[18]. Years later, in 1990, Györgyi, Turányi, and Field 
proposed a detailed mechanism of the BZ reaction, 
that consisted of 80 chemical reactions and 27 chem-
ical species and which is currently the most accepted 
reaction mechanism [19]. The BZ mechanism has two 
subsets, the first consists of a set of inorganic chemical 
reactions while the second one consists of organic 
chemical reactions. Just one year later, in his seminal 
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work A history of chemical oscillations and waves, 
Zhabotinsky presented a mathematical model in differ-
ential equations based on a subset of chemical reac-
tions from the work of Györgyi et al., and mentioned 
that it is possible to explain BZ reaction dynamics with 
said subset [12]. At this point, the following questions 
arise: How reliable and valid is to reduce an extremely 
complex reaction mechanism to a subset of reactions? 
What criteria should be used to make this reduction? 
Could reducing the mechanism eliminate important 
system information? Is it possible to use mathematical 
tools to carry out this reduction properly without los-
ing information? And if this is possible, can these 
mathematical techniques be used to study biochemical 
regulatory mechanisms to identify the most critical 
system variables? 

To answer these questions, it is necessary to under-
stand that DST is not the only mathematical tool used 
to study the complex mechanisms of biochemical reg-
ulation [20]. There are tools such as models of agents 
and cellular automata that have been used to explain 
at least qualitatively the phenomena that emerge from 
different physiological processes [20]. However, the tool 
that has attracted the most attention today is the 
Complex Networks Theory (CNT) based on graph the-
ory [21] [22]. The CNT has been mainly developed by 
physicists, with the pioneering works of Barabasi et 
al., [23]. This theory has allowed us to understand the 
emergence of extremely complex behaviors in systems 
that involve a large number of variables because, 
through statistics, it enables us to study the structural 
properties of the networks to identify the variables or 
entities with greater relevance in the system of inter-
est [24]. Multiple measures of centrality can be used to 
determine the level of importance of a variable in a 
complex network, such as degree, clustering, hub, 
authority, etc., [25]. In Biomedical research, CNT is 
widely used to study many phenomena including dis-
ease propagation, genetic regulation networks, pro-
tein-protein interaction networks, and identification 

of possible therapeutic targets in complex biochemical 
reaction mechanisms [25]. In their excellent work, Costa 
et al. describe the CNT as a vital tool for Systems 
Biology [26]. 

 It is well known that the emergence of chronic 
degenerative diseases (such as insulin resistance, dia-
betes mellitus II, cancer, cardiovascular diseases 
among others) result from the mismatch of a wide 
variety of physiological processes that are in turn reg-
ulated by an intricate network of biochemical reac-
tions, which makes it difficult to study the interaction, 
coupling, and activation that may exist between dif-
ferent physiological processes [27] [28] [29] 30]. The CNT 
could facilitate the study of different biochemical pro-
cesses related to each other taking these processes as 
complex networks where the participating chemical 
species can be considered nodes or vertices, and all 
possible physicochemical interactions between them 
as links or edges. It is possible to identify the chemical 
species with greater relevance by determining net-
work centrality properties, and applying the standard 
chemical kinetics techniques (CK) [31] gives rise to 
mathematical models in differential equations that 
facilitate the study of coupling and synchronization 
phenomena between different physiological processes 
and their possible relationship with various patholo-
gies (see Figure 1).

It is necessary to identify when a group of physiolog-
ical processes is coupled or synchronized, which 
requires tools that permit identifying such phenom-
ena. Thanks to the development of machine learning, 
it is possible to create models capable of learning to 
recognize or identify a series of patterns with high 
precision through the acquisition of experience (data) 
[32]. Machine learning can be divided in supervised and 
unsupervised learning and can be further classified 
into different combinations of these [32] [33]. In general, 
supervised learning consists of providing a series of 
input data with their respective label to a model so 
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that the model is generalized and subsequently allows 
the label to be predicted knowing only the input data 
or characteristics [32] [33]. On the other hand, unsuper-
vised learning consists of providing only the input 
data or characteristics to the model without its label, 
to identify specific patterns of information [32] [33]. Each 
supervised learning model must go through a train-
ing, validation, and testing process to ensure general-
ization [32] [33]. Supervised learning models can be 
divided into two large groups: classification models 
and regression models; in the former, the variable is to 
be predicted as a qualitative or categorical variable. In 
regression models, the variable to be predicted is a 
quantitative variable, either continuous or discrete [32] 

[33]. Hereby, the following question arises: Is it possible 
to use a supervised learning model to predict the cou-
pling or synchronization of biochemical processes 
represented by systems of differential equations?

To answer this question, it is necessary to ask another 
one: How can data be provided to the supervised 
learning model to achieve the prediction of a coupling 
state? The answer is that by modeling biochemical 
processes as systems of differential equations and 
coupling them unidirectionally or bidirectionally, it is 
possible to numerically solve these models, from 
which the change in the concentration of chemical 
species with respect to time is obtained. Therefore, it 
is possible to determine if, for any value of the cou-
pling parameter, these chemical species are synchro-
nized. The degree of synchronization can be deter-
mined by evaluating some nonlinear metric, such as 
the fractal dimension of the time series, evaluation of 
Lyapunov exponents, entropy, the study of the syn-
chronization variety in the phase space of the vari-
ables under study, etc. [35] [36] [37] [38], then it is possible to 
use some of these metrics to determine, through a 
supervised learning model, whether these systems are 
coupled or not. It is also possible to obtain images from 
the numerical solution of the systems of differential 
equations; such is the case of recurrence diagrams [39] 

FIGURE 1. General diagram for obtaining a system of 
differential equations from a biochemical system. It is 
possible to build complex networks from biochemical 

reaction mechanisms and, through the network's structural 
properties, identify the most relevant variables to use

CK standard tools to build a dynamic system that is 
representative of this process. Finally, coupling the 

systems of equations obtained employing a bidirectional or 
unidirectional coupling to study possible synchronization 

effects and their relationship with various pathologies.
The block diagrams of the biochemical processes are only 

schematic representations of Insulin Resistance and 
Diabetes Mellitus II. The colors of the blocks and lines are 
also a graphic representation of the chemical species and 

the possible interactions present in these processes. 
However, they do not describe the actual biochemical 

process. For the construction of the network diagrams, the 
Gephi software was used (https://gephi.org/) [34]. 
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[40] or Gramian angular field images (gaf) [40], which can 
be used with a supervised learning model to deter-
mine if a group of variables, in this case, chemical 
species related to important biochemical processes, 
are coupled or not, and thereafter, to associate a possi-
ble state of synchronization with various pathologies. 
Currently, it is possible to monitor blood concentration 
of a variety of chemical species related to critical met-
abolic processes, which are associated with different 
pathologies [41] [42] [43] [44], making it possible to construct 
time series and use them to build a database of gaf 
images to train, validate and test a supervised learning 
model to identify possible synchronization states and 
their relationship with pathologies; however, clinical 
trials can be expensive and, as a result, conducting 
this type of study is not practical [41] [42] [43] [44]. On the 
other hand, using mathematical models that represent 
the dynamics of these variables and using their numer-
ical solution to obtain their respective gaf images to 
train, validate and test the supervised learning model, 
offers a solution to this problem. The ability of each 
mathematical model to represent a biochemical pro-
cess depends on its degree of complexity, i.e., whether 
the model involves not only metabolic biochemical 
processes but also epigenetic processes [45].

To analyze the possibility of using CNT in biochemi-
cal regulatory mechanisms for identifying the most 
critical variables of the system and building a system 
of differential equations that model it, the BZ reaction 
was used as a study model since it is currently the 
most complex oscillating reaction discovered so far 
and it has been used to study the biochemical feed-
back mechanisms present in the Krebs cycle [12] [13] [14] [15] 

[16] [17] [18] [19]. On the other hand, to emulate the effects of 
coupling and synchronization, the obtained model 
was bidirectionally coupled with other models associ-
ated with oscillatory biochemical processes, and its 
numerical solution was used to obtain the gaf images. 
Finally, a supervised learning tool was used to identify 
the type of models coupled using the gaf images.

MATERIALS AND METHODS
For this study, the general mechanism of the BZ reac-

tion proposed by Györgyi et al. [19] was used. A network 
was built considering two types of nodes or vertices, 
the "chemical species" type nodes, and the "chemical 
reaction" type nodes. The link or edge between species 
and chemical reactions is given by the reaction rate 
constant of each of the reactions, which gives place to 
a "bipartite" network [20] [21] [22] [23] [24] [25]. Once the net-
work was built, the structural property authority was 
evaluated using the algorithm proposed by Kleinberg, 
which was initially proposed to determine the level of 
importance and information flow of websites, to reveal 
the sites with the highest traffic in a virtual hyperlink 
environment [46]. In this work, the structural property 
authority was used to determine the importance of 
each of the chemical species involved in the BZ reac-
tion mechanism. To build a system of nonlinear differ-
ential equations capable of describing the BZ reaction 
mechanism, it was assumed that the most relevant 
variables have the most significant flow of "chemical" 
information. Once the most critical chemical species 
in the reaction mechanism were determined under the 
authority criteria, the mathematical model was con-
structed using standard techniques of CK [31]. When 
the model was obtained, the effects of synchroniza-
tion that could emerge due to its coupling with differ-
ent chemical oscillators were studied to emulate the 
synchronization processes present in different bio-
chemical systems in mammals [47]. To this end, a bidi-
rectional coupling was carried out with three different 
models [48]. The first one was an identical model, the 
second one was the model proposed by Levefer also 
called Brusselator [49] [50], which shows interesting auto-
catalytic processes and, lastly, the model proposed by 
Selkov that describes the oscillatory behaviors present 
in glycolysis [51] [52]. For each case, the coupling param-
eter was varied and the numerical solution of the sys-
tems of coupled differential equations was obtained 
using the standard fourth-order Runge Kutta tech-
nique [53]. Once the time series of the numerical solu-
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tion of the differential equations were obtained, the 
image of the time series of the bidirectionally coupled 
variables was constructed using the gaf technique [54], 
which was described extensively by Wang et al [55]. In 
general, this technique consists in representing a time 
series in a polar coordinate system, each Xi value of the 
time series ( ) is scaled so that all values are in the 
interval [-1,1] or [0,1], subsequently, with the rescaled 
values the angular cosine is obtained (φi= arccos (xi), -1 
≤ xi ≤ 1, xi ∈ ) and the coordinate r (r= , ti ∈ ℕ), where 
ti corresponds to the time interval between each value 
of the time series and N is a constant factor [55]. Lastly, 
the addition/subtraction between each point is deter-
mined to identify possible temporal correlations 
within different time intervals [55]. It is possible to 
obtain two types of gaf, the sum (gasf= cos (φi+φj)) and 
the subtraction (gadf= sin (φi+φj)). These values are 
used to construct the Grammar matrix that is used to 
obtain the image (see Figure 2) [55]. This technique in 
combination with supervised learning tools has been 
used to study time series of electroencephalograms 
[56], electrocardiograms [57], signals obtained from bio-
sensors [58], etc.

FIGURE 2. General diagram for obtaining
the gaf images. The time series are rescaled, later

these are represented in a polar coordinate system
and finally, the gaf images are obtained.

After the gasf and gadf images were obtained, the 
supervised learning model was generated using the 
Orange Data Mining software (https://orange.biolab.
si/) [58] [59], which is a visual toolbox where it is possible 
to build workflows that allow the use of widgets for 
analysis and data processing, supervised and unsu-
pervised learning tools, data visualization and model 
evaluation. It also has extensions for text mining, 
spectroscopy, complex network analysis, time series, 
bioinformatics, and image analysis [59] [60] [61]. The trans-
fer learning technique, which is an artificial intelli-
gence technique that consists of pre-training a model 
with an extensive database and the experience gained 
from said training to apply it to another problem that 
may be completely different, was used to process the 
gaf images [61] [62] [63]. This technique is used in image 
processing as follows: deep convolutional neural net-
works (CNN) are used, which are pre-trained with a 
large number of images of all kinds, later, activations 
of the penultimate layer of the model (CNN codes) are 
used to represent the images with vectors (embed-
ded), i.e., CNN is used as a feature extractor or descrip-
tor, allowing supervised learning models to be used 
and thus obtaining high precision values in image 
classification [61] [62] [63]. In Orange, it is possible to 
embed images using different CNNs, including 
Google's Inception V3 neural network that has been 
pre-trained with the ImageNet database consisting of 
1.2 million images. The neural network has 2048 
nodes in its penultimate layer, so each image rep-
resents it with a vector of dimension 2048 [33] [64] (CNN 
by default in Orange). On the other hand, embedding 
images can also be done with CNN SqueezeNet, which 
is a much simpler network than Inception V3; never-
theless, it achieves a precision close to that of CNN 
AlexNet on the ImageNet database, this CNN rep-
resents each image as a vector of dimension 1000 [65]. It 
is also possible to embed with CNN's VGG16 and 
VGG19 proposed by the Visual Geometry Laboratory of 
the University of Oxford [66], in the same way, pre-
trained with the ImageNet database,  the CNN DeepLoc 
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pre-trained with 21882 images [67] and CNN Painters, a 
pre-trained network with 79433 images [59] [60] [61]. For 
embedding the images, Orange sends them to an 
external server, except for CNN SquezeeNet, which is 
done locally, making embedding faster. In this work, 
the gaf images were embedded using CNN Google 
Inception V3 and SquezeeNet. Subsequently, a super-
vised learning model was trained as a classifier of the 
type of coupled oscillators using the gaf images. A 
logistic regression with Ridge penalty or regulariza-
tion (L2 = 1) was used as a classification method.  Six 
different evaluation techniques were used to train, 
validate and test the classifier: 1) the standard strati-
fied holdout technique (70% training set / 30% test 
set), the training and testing subsets are repeated 10 
times (A), 2) a 3-fold stratified cross-validation ( B), 3) 
a 5-fold stratified cross-validation (C), 4) a 10-fold 
stratified cross-validation (D), 5) a 20-fold stratified 
cross-validation (E) and 6) the leave-one-out cross-val-
idation (F), to identify the best evaluation technique 
and avoid overfitting [33] [68] [69]. The previous procedure 
was repeated implementing a principal component 
analysis (PCA) using a number of components such 
that they explain 95% of the total variance of the 
images (21 principal components for Google Inception 
V3 and nine principal components for SquezeeNet). 
After embedding the images with the CNN, the same 
six evaluation techniques were used to study the 
effect of reducing dimensions and to avoid overfitting 
[33] [68] [69]. For both procedures the classifier confusion 
matrix was obtained to determine the classification 
metrics: Classification Accuracy (CA), Precision (P), 
Recall (R), and F1-score (F1) [33] [70].

RESULTS AND DISCUSSION
Figure 3a is a diagram that represents the complex 

network for the general mechanism of the BZ reaction 
proposed by Györgi et al. The nodes represent each of 
the 27 chemical species and 80 chemical reactions 
participating in the reaction mechanism, and the links 
represent the reaction rate constant magnitude. The 

largest nodes, which are shown in Table 1, represent 
the nodes with the highest numerical value of author-
ity. Figure 3b shows the network authority property 
histogram. Of the 107 nodes, 49 (i.e. 45.79%) have an 
authority value between 0 and 0.1 (none being actu-
ally zero), 40 have an authority value between 0.1 and 
0.2 (37.38%), 9 nodes between 0.2 and 0.3 (8.41%), 3 
nodes between 0.3-0.4 (2.8%), 3 nodes between 0.4 
and 0.5 (2.8%), 2 nodes between 0.5 and 0.6 (1.87%), 
and one between 0.9 and 1 (0.93%). This last one is the 
most important node, considering the authority cen-
trality criterion. In the histogram, it is easy to distin-
guish that there are few nodes with a high authority 
value, making it possible to identify the chemical spe-
cies with greater importance, possibly due to power-
law-like behavior [71]. Power laws are present in a wide 
variety of biological phenomena and are related to 
processes of a universal nature [72].

As expected, the chemical node or species with 
higher authority is the H+ cation because the chemical 
reaction at the experimental level is carried out in the 
presence of sulfuric acid (H2SO4), which is a source of 
H+ and allows the formation of bromous acid (HBrO2), 
an essential variable for the chemical feedback mech-
anism that enables the existence of periodic behaviors 
[12] [13] [14]. Furthermore, we can note that H2O is the sec-
ond chemical species with higher authority since the 
precursor solutions for the chemical reaction use 
deionized water as a solvent [12]. The third most crucial 
chemical species is the carboxy radical (*COOH) inas-
much as the breakdown of malonic acid as a precursor 
agent results in short-lived chemical species [12] [19]. The 
presence of Br* radicals is mainly because during the 
progress of the reaction molecular bromine (Br2) 
occurs due to the bromate anion precursor agent 
(BrO3), said Br2 results in the formation of bromide ions 
(Br-) and subsequently to Br* radicals, which are fun-
damental chemical species for the feedback mecha-
nism [12] [19]. Because the chemical reaction includes 
organic components, specifically malonic acid and its 
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derivatives, it has carboxyl or carbonic acid groups 
that can be decomposed into carbon dioxide (CO2), 
which is seen in the form of gas bubbles during the 
reaction [12] [13] [14].

FIGURE 3. a) The complex network of the chemical 
mechanism of Györgyi et al [19]. The larger nodes 

correspond to those that have greater authority value;
b) Histogram of structural property authority.

It can be observed that most of the nodes have an 
authority value below 0.3 (91.58%), however,

there are few nodes with authority values above 0.3 
(8.42%), which can be considered as the most important 

nodes under the criterion of centrality authority. Gephi 
software was used for the construction of the network 

diagram (https://gephi.org/) [34]. 

Lastly, we can see that the oxidized form of the 
Cerium metal (Ce4+) is also among the ten nodes with 
the highest authority value, this results from said 
chemical species acting as a catalytic agent in the 
chemical reaction and that alongside its reduced form 
(Ce3+), it gives rise to the typical color changes of the BZ 
reaction [12] [18]. With these results, it is possible to 
observe that applying CNT to the BZ reaction mecha-
nism proposed by Györgyi et al. [19] permits identifying 
the chemical species with greater relevance under the 
criterion of authority. Such chemical species appear 
naturally in the mechanism described by Zhabotinsky, 
either in its ionic form or in the form of a precursor 
compound [12], so it is possible to approximate the BZ 
reaction to said subset of reactions. Still, it is essential 
to mention that it is possible to use other centrality 
criteria to identify the nodes with greater relevance [25].

TABLE 1. Authority values.Tabla	1	
	

Node Authority 

H+ 1 
H2O 0.5435 

*COOH 0.5086 
Br- 0.4598 
Br* 0.4133 
CO2 0.4062 

HOBr 0.3870 
HBrO2 0.3289 
BrO3

- 0.3030 
Ce4+ 0.2939 

	
Tabla	2	

	
Evaluation 
Technique	

CNN 

Inception V3 SquezeeNet 

A CA F1 P R CA F1 P R 

B 0.961 0.961 0.963 0.961 0.983 0.983 0.984 0.983 

C 0.950 0.949 0.953 0.950 0.966 0.967 0.969 0.966 

D 0.950 0.949 0.953 0.950 0.966 0.967 0.969 0.966 

E 0.950 0.949 0.953 0.950 0.983 0.983 0.984 0.983 

F 0.950 0.949 0.953 0.950 0.983 0.983 0.984 0.983 

A 0.950 0.949 0.953 0.950 0.983 0.983 0.984 0.983 

	
Tabla	3	

	
Evaluation 
Technique	

CNN 

Inception V3 
(21 PC, explained variance: 95%) 

SquezeeNet 
(9 PC, explained variance: 95%) 

A CA F1 P R CA F1 P R 

B 0.961 0.961 0.963 0.961 0.983 0.983 0.984 0.983 

C 0.950 0.950 0.953 0.950 0.950 0.951 0.957 0.950 

D 0.950 0.950 0.953 0.950 0.967 0.967 0.970 0.967 

E 0.950 0.950 0.953 0.950 0.967 0.967 0.970 0.967 

F 0.950 0.950 0.953 0.950 0.967 0.967 0.970 0.967 

A 0.950 0.950 0.953 0.950 0.967 0.967 0.970 0.967 

	
	
	

 The mechanism proposed by Zhabotisnky uses Iron 
(Fe) as a catalyst instead of Cerium (Ce) [12]. Below is 
the chemical mechanism studied by Zhabotinsky 
replacing Fe with Ce. 

BZ Chemical model [12]

1. H+ +HBrO3 + HBrO2 ↔ HBrO2
+ + BrO2 + H2O

2. BrO2 + H+ ↔ HBrO2
+

3. Ce3+ + HBrO2+ ↔ Ce4+ + HBrO2

4. H+ + 2HBrO2 ↔ HOBr + HBrO3 + H+

5. H+ + Br- + HBrO2 ↔ 2HOBr
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6. H+ + Br - + HOBr ↔ Br2 + H2O
7. H+ + Br - + HBrO3 ↔ HBrO2 + HOBr
8. 2Ce4+ + CHBr(COOH)2 ↔ 2Ce3+ + CBr(COOH)2 + H+

9. H2O + CBr(COOH)2 ↔ H+ + Br - + COH(COOH)2

10. HOBr + CHBr(COOH)2 ↔ CBr2(COOH)2 + H2O
11. Br2 + CHBr(COOH)2 ↔ CBr2(COOH)2 + H+ + Br -

12. H2O + CHBr(COOH)2 ↔ CHOH(COOH)2 + H+ + Br -

To make studying the reaction mechanism easier, it is 
possible to make the following variable change: A= 
[HBrO3-]; B= [Any organic species derived from malo-
nic acid]; P= [HOBr]; X= [HBrO2]; Y=[Br -]; Z= [Ce4+]; C= 
[Ce3+]+[Ce4+]; h0≈H+ [12]; therefore, the chemical mecha-
nism is transformed into:

1. h0 + A + X ↔ HBrO2
+ + BrO2 + H2O    

2. BrO2 + h0 ↔ HBrO2
+                                

3. C-Z + HBrO2
+ ↔ Z + X                             

4. h0 + 2X ↔ P + A + h0                                             
5. h0 + Y + X ↔ 2P                                     
6. h0 + Y + P ↔ Br2 + H2O                        
7. h0 + Y + A ↔ X + P                                
8. 2Z + B ↔ 2[C-Z] + B + h0                                          
9. H2O + B ↔ h0 + Y + B                             
10. P + B ↔ B + H2O                                 
11. Br2 + B ↔ B+ h0 + Y                               
12. H2O + B ↔ B + h0 + Y   

Considering species A, B and P as constants and 
chemical reactions as elementary (the power of vari-
ables X, Y, and Z is directly related to their stoichiomet-
ric coefficients), it is possible to use the standard tech-
niques of CK to construct reaction speed laws [12] [31]:

Equations 1
1. VX= k1h0AX
2. V= k2[BrO2]h0

3. VZ= k3[HBrO2
+][C-Z]

4. VX= k4h0X2

5. VX= k5h0XY

6. VY= h0PY

7. VX= k7h0AY
8. VZ= k8BZ
9. VY= k9B
10. V= k10PB
11. VY= k11[Br2]B
12. VY= K12B

Where the variables X, Y, and Z are the variables that 
generally describe the chemical mechanism of the BZ 
reaction [12]. Using the law of mass action, the following 
system of nonlinear differential equations is obtained. 
It models the change of X, Y, and Z with respect to time 
and as a function of the chemical concentrations of the 
precursors [12]: 

Equations 2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘!ℎ"𝐴𝐴𝑑𝑑 − 𝑘𝑘#ℎ"𝑑𝑑𝑋𝑋 + 𝑘𝑘$ℎ"𝐴𝐴𝑋𝑋 − 2𝑘𝑘%ℎ"𝑑𝑑&, 

'(
')
= *+!+",-

+#!.$(01-)3+"
− 𝑘𝑘#ℎ"𝑑𝑑𝑋𝑋 − 𝑘𝑘$ℎ"𝐴𝐴𝑋𝑋 + 𝑘𝑘!&𝐵𝐵,  

𝑑𝑑𝑍𝑍
𝑑𝑑𝑑𝑑 = 2𝑘𝑘!ℎ"𝐴𝐴𝑑𝑑 −

𝑘𝑘4𝑘𝑘5𝐵𝐵𝑍𝑍
𝑘𝑘14ℎ"(𝐶𝐶 − 𝑍𝑍) + 𝑘𝑘5

. 

 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘!𝐴𝐴𝑑𝑑 − 𝑘𝑘#𝑑𝑑𝑋𝑋 + 𝑘𝑘$𝐴𝐴𝑋𝑋 − 2𝑘𝑘%𝑑𝑑&, 

 
𝑑𝑑𝑋𝑋
𝑑𝑑𝑑𝑑 =

1
2𝑓𝑓𝑘𝑘4𝐵𝐵𝑍𝑍 − 𝑘𝑘#𝑑𝑑𝑋𝑋 − 𝑘𝑘$𝐴𝐴𝑋𝑋 + 𝑘𝑘!&𝐵𝐵, 

!"
!#
= 2𝑘𝑘$𝐴𝐴𝐴𝐴 − 𝑘𝑘%𝐵𝐵Z. 

 

 

'6
'7
= 891693616%

:
, 

 
'9
'7

1891693;<%3=
:&

,  
 

'<
'7
= (𝑢𝑢 −𝑤𝑤).  

 
Where 𝜀𝜀 = +!,

+'>
; 𝜀𝜀´ = &+(+!,

+)+'>
; 𝑞𝑞 = &+*+(

+)+'
; 𝛼𝛼 = +'%,

+'>
. 

 

 

𝜀𝜀 '6
')
= 𝑢𝑢(1 − 𝑢𝑢) + (𝑓𝑓w+ 𝛼𝛼) 816

836
, 

 
𝑑𝑑𝑤𝑤
𝑑𝑑𝑑𝑑 = 𝑢𝑢 −𝑤𝑤. 

 

 

𝜀𝜀!
'6'
')

= 𝑢𝑢!(1 − 𝑢𝑢!) + (𝑓𝑓!𝑤𝑤! + 𝛼𝛼!)
8'16'
8'36'

+ 𝑘𝑘(𝑢𝑢& − 𝑢𝑢!), 
𝑑𝑑𝑤𝑤!
𝑑𝑑𝑑𝑑 = 𝑢𝑢! −𝑤𝑤!, 

𝜀𝜀&
'6%
')

= 𝑢𝑢&(1 − 𝑢𝑢&) + (𝑓𝑓&𝑤𝑤& + 𝛼𝛼&)
8%16%
8%36%

+ 𝑘𝑘(𝑢𝑢! − 𝑢𝑢&), 
𝑑𝑑𝑤𝑤&
𝑑𝑑𝑑𝑑 = 𝑢𝑢& −𝑤𝑤&. 

 

 

Where ki are the reaction rate constants and F is a 
stoichiometric factor used as an adjustment parameter 
[12] [13]. It is possible to simplify the model by dividing 
the numerator and denominator of the term           by 
k9, then doing a geometric series development and 
neglecting terms of greater order k8BZ  ≈ k8BZ is 
obtained. Therefore, assuming that the concentration 
of H+ remains constant and that F=  ƒ, then the model 
proposed by Zhabotinsky can be reduced to [14]: 

Equations 3

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘!ℎ"𝐴𝐴𝑑𝑑 − 𝑘𝑘#ℎ"𝑑𝑑𝑋𝑋 + 𝑘𝑘$ℎ"𝐴𝐴𝑋𝑋 − 2𝑘𝑘%ℎ"𝑑𝑑&, 

'(
')
= *+!+",-

+#!.$(01-)3+"
− 𝑘𝑘#ℎ"𝑑𝑑𝑋𝑋 − 𝑘𝑘$ℎ"𝐴𝐴𝑋𝑋 + 𝑘𝑘!&𝐵𝐵,  

𝑑𝑑𝑍𝑍
𝑑𝑑𝑑𝑑 = 2𝑘𝑘!ℎ"𝐴𝐴𝑑𝑑 −

𝑘𝑘4𝑘𝑘5𝐵𝐵𝑍𝑍
𝑘𝑘14ℎ"(𝐶𝐶 − 𝑍𝑍) + 𝑘𝑘5

. 

 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘!𝐴𝐴𝑑𝑑 − 𝑘𝑘#𝑑𝑑𝑋𝑋 + 𝑘𝑘$𝐴𝐴𝑋𝑋 − 2𝑘𝑘%𝑑𝑑&, 

 
𝑑𝑑𝑋𝑋
𝑑𝑑𝑑𝑑 =

1
2𝑓𝑓𝑘𝑘4𝐵𝐵𝑍𝑍 − 𝑘𝑘#𝑑𝑑𝑋𝑋 − 𝑘𝑘$𝐴𝐴𝑋𝑋 + 𝑘𝑘!&𝐵𝐵, 

!"
!#
= 2𝑘𝑘$𝐴𝐴𝐴𝐴 − 𝑘𝑘%𝐵𝐵Z. 

 

 

'6
'7
= 891693616%

:
, 

 
'9
'7

1891693;<%3=
:&

,  
 

'<
'7
= (𝑢𝑢 −𝑤𝑤).  

 
Where 𝜀𝜀 = +!,

+'>
; 𝜀𝜀´ = &+(+!,

+)+'>
; 𝑞𝑞 = &+*+(

+)+'
; 𝛼𝛼 = +'%,

+'>
. 

 

 

𝜀𝜀 '6
')
= 𝑢𝑢(1 − 𝑢𝑢) + (𝑓𝑓w+ 𝛼𝛼) 816

836
, 

 
𝑑𝑑𝑤𝑤
𝑑𝑑𝑑𝑑 = 𝑢𝑢 −𝑤𝑤. 

 

 

𝜀𝜀!
'6'
')

= 𝑢𝑢!(1 − 𝑢𝑢!) + (𝑓𝑓!𝑤𝑤! + 𝛼𝛼!)
8'16'
8'36'

+ 𝑘𝑘(𝑢𝑢& − 𝑢𝑢!), 
𝑑𝑑𝑤𝑤!
𝑑𝑑𝑑𝑑 = 𝑢𝑢! −𝑤𝑤!, 

𝜀𝜀&
'6%
')

= 𝑢𝑢&(1 − 𝑢𝑢&) + (𝑓𝑓&𝑤𝑤& + 𝛼𝛼&)
8%16%
8%36%

+ 𝑘𝑘(𝑢𝑢! − 𝑢𝑢&), 
𝑑𝑑𝑤𝑤&
𝑑𝑑𝑑𝑑 = 𝑢𝑢& −𝑤𝑤&. 
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The model described above is very similar to that pro-
posed by Field and Noyes [13] [18], except for the term 
k12B, which is related to the rate at which chemical 
species derived from malonic acid, specifically 
CHBr(COOH)2 by its decomposition, it leads to the for-
mation of new Br - ions, which cannot be neglected 
from the mathematical model because they have a 
strong implication in the feedback process of the BZ 
reaction [12] [19] since the excessive production of these 
can lead to complete inhibition of oscillations. Also, 
these ions actively participate in the production of 
HBrO2, which in turn facilitates the process of chang-
ing the oxidation state of the Ce catalyst.

Making the change of variable [13]:

𝑢𝑢 = #!"!#""$
$; 𝑣𝑣 = #"#%""$

$; 𝑤𝑤 = #"$"!&'(""$)%
$; 𝑡𝑡 = 𝑘𝑘*𝐵𝐵𝐵𝐵. 

 
So, Equations 3 in their dimensionless form are:

Equations 4

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘!ℎ"𝐴𝐴𝑑𝑑 − 𝑘𝑘#ℎ"𝑑𝑑𝑋𝑋 + 𝑘𝑘$ℎ"𝐴𝐴𝑋𝑋 − 2𝑘𝑘%ℎ"𝑑𝑑&, 

'(
')
= *+!+",-

+#!.$(01-)3+"
− 𝑘𝑘#ℎ"𝑑𝑑𝑋𝑋 − 𝑘𝑘$ℎ"𝐴𝐴𝑋𝑋 + 𝑘𝑘!&𝐵𝐵,  

𝑑𝑑𝑍𝑍
𝑑𝑑𝑑𝑑 = 2𝑘𝑘!ℎ"𝐴𝐴𝑑𝑑 −

𝑘𝑘4𝑘𝑘5𝐵𝐵𝑍𝑍
𝑘𝑘14ℎ"(𝐶𝐶 − 𝑍𝑍) + 𝑘𝑘5

. 

 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘!𝐴𝐴𝑑𝑑 − 𝑘𝑘#𝑑𝑑𝑋𝑋 + 𝑘𝑘$𝐴𝐴𝑋𝑋 − 2𝑘𝑘%𝑑𝑑&, 

 
𝑑𝑑𝑋𝑋
𝑑𝑑𝑑𝑑 =

1
2𝑓𝑓𝑘𝑘4𝐵𝐵𝑍𝑍 − 𝑘𝑘#𝑑𝑑𝑋𝑋 − 𝑘𝑘$𝐴𝐴𝑋𝑋 + 𝑘𝑘!&𝐵𝐵, 

!"
!#
= 2𝑘𝑘$𝐴𝐴𝐴𝐴 − 𝑘𝑘%𝐵𝐵Z. 

 

 

'6
'7
= 891693616%

:
, 

 
'9
'7

1891693;<%3=
:&

,  
 

'<
'7
= (𝑢𝑢 −𝑤𝑤).  

 
Where 𝜀𝜀 = +!,

+'>
; 𝜀𝜀´ = &+(+!,

+)+'>
; 𝑞𝑞 = &+*+(

+)+'
; 𝛼𝛼 = +'%,

+'>
. 

 

 

𝜀𝜀 '6
')
= 𝑢𝑢(1 − 𝑢𝑢) + (𝑓𝑓w+ 𝛼𝛼) 816

836
, 

 
𝑑𝑑𝑤𝑤
𝑑𝑑𝑑𝑑 = 𝑢𝑢 −𝑤𝑤. 

 

 

𝜀𝜀!
'6'
')

= 𝑢𝑢!(1 − 𝑢𝑢!) + (𝑓𝑓!𝑤𝑤! + 𝛼𝛼!)
8'16'
8'36'

+ 𝑘𝑘(𝑢𝑢& − 𝑢𝑢!), 
𝑑𝑑𝑤𝑤!
𝑑𝑑𝑑𝑑 = 𝑢𝑢! −𝑤𝑤!, 

𝜀𝜀&
'6%
')

= 𝑢𝑢&(1 − 𝑢𝑢&) + (𝑓𝑓&𝑤𝑤& + 𝛼𝛼&)
8%16%
8%36%

+ 𝑘𝑘(𝑢𝑢! − 𝑢𝑢&), 
𝑑𝑑𝑤𝑤&
𝑑𝑑𝑑𝑑 = 𝑢𝑢& −𝑤𝑤&. 

 

 

𝜀𝜀 = !!"
!"#

; 𝜀𝜀´ = $!#!!"
!$!"#

; 𝑞𝑞 = $!%!#
!$!"

; 𝛼𝛼 = !"&"
!"#

. 

 

Where

However, as in the model proposed by Field and 
Noyes, the parameter ε', is very small compared to ε [13] 

[18]; therefore, it is possible to consider that the variable 
�, remains in a stationary state, so the system of 
Equations 4 can be reduced to: 

Equations 5

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘!ℎ"𝐴𝐴𝑑𝑑 − 𝑘𝑘#ℎ"𝑑𝑑𝑋𝑋 + 𝑘𝑘$ℎ"𝐴𝐴𝑋𝑋 − 2𝑘𝑘%ℎ"𝑑𝑑&, 

'(
')
= *+!+",-

+#!.$(01-)3+"
− 𝑘𝑘#ℎ"𝑑𝑑𝑋𝑋 − 𝑘𝑘$ℎ"𝐴𝐴𝑋𝑋 + 𝑘𝑘!&𝐵𝐵,  

𝑑𝑑𝑍𝑍
𝑑𝑑𝑑𝑑 = 2𝑘𝑘!ℎ"𝐴𝐴𝑑𝑑 −

𝑘𝑘4𝑘𝑘5𝐵𝐵𝑍𝑍
𝑘𝑘14ℎ"(𝐶𝐶 − 𝑍𝑍) + 𝑘𝑘5

. 

 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘!𝐴𝐴𝑑𝑑 − 𝑘𝑘#𝑑𝑑𝑋𝑋 + 𝑘𝑘$𝐴𝐴𝑋𝑋 − 2𝑘𝑘%𝑑𝑑&, 

 
𝑑𝑑𝑋𝑋
𝑑𝑑𝑑𝑑 =

1
2𝑓𝑓𝑘𝑘4𝐵𝐵𝑍𝑍 − 𝑘𝑘#𝑑𝑑𝑋𝑋 − 𝑘𝑘$𝐴𝐴𝑋𝑋 + 𝑘𝑘!&𝐵𝐵, 

!"
!#
= 2𝑘𝑘$𝐴𝐴𝐴𝐴 − 𝑘𝑘%𝐵𝐵Z. 

 

 

'6
'7
= 891693616%

:
, 

 
'9
'7

1891693;<%3=
:&

,  
 

'<
'7
= (𝑢𝑢 −𝑤𝑤).  

 
Where 𝜀𝜀 = +!,

+'>
; 𝜀𝜀´ = &+(+!,

+)+'>
; 𝑞𝑞 = &+*+(

+)+'
; 𝛼𝛼 = +'%,

+'>
. 

 

 

𝜀𝜀 '6
')
= 𝑢𝑢(1 − 𝑢𝑢) + (𝑓𝑓w+ 𝛼𝛼) 816

836
, 

 
𝑑𝑑𝑤𝑤
𝑑𝑑𝑑𝑑 = 𝑢𝑢 −𝑤𝑤. 

 

 

𝜀𝜀!
'6'
')

= 𝑢𝑢!(1 − 𝑢𝑢!) + (𝑓𝑓!𝑤𝑤! + 𝛼𝛼!)
8'16'
8'36'

+ 𝑘𝑘(𝑢𝑢& − 𝑢𝑢!), 
𝑑𝑑𝑤𝑤!
𝑑𝑑𝑑𝑑 = 𝑢𝑢! −𝑤𝑤!, 

𝜀𝜀&
'6%
')

= 𝑢𝑢&(1 − 𝑢𝑢&) + (𝑓𝑓&𝑤𝑤& + 𝛼𝛼&)
8%16%
8%36%

+ 𝑘𝑘(𝑢𝑢! − 𝑢𝑢&), 
𝑑𝑑𝑤𝑤&
𝑑𝑑𝑑𝑑 = 𝑢𝑢& −𝑤𝑤&. 

 

 

We named this model Modified Oregonator (NOM). 
Amemiya et al. [73], and Krug et al. [74], associated the 
term to the sensitivity of the BZ reaction to the pres-
ence of oxygen and its photosensitivity. In contrast, 
we associate this term with the decomposition of the 
derivatives of the malonic acid that give rise to Br- 
reduction. The chemical mechanism proposed by 
Györgyi et al. was used as a starting point [19] identify-
ing the most relevant chemical species through the 
CNT under the authority criterion, which approxi-
mates the reaction mechanism BZ, to the subset of 
reactions proposed by Zhabotisky [12].

To emulate the synchronization processes present in 
different physiological systems, the mathematical 
model obtained in this work was coupled with differ-
ent oscillators, all of them dimensionless. The param-
eters of the models were selected according to the 
stability criteria to ensure the presence of oscillations 
[13] [18]. The coupling was linear bidirectional in all 
cases, and the coupling force is modulated by parame-
ter k. The system of Equations 6 shows two coupled 
NOM oscillators: 

Equations 6

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘!ℎ"𝐴𝐴𝑑𝑑 − 𝑘𝑘#ℎ"𝑑𝑑𝑋𝑋 + 𝑘𝑘$ℎ"𝐴𝐴𝑋𝑋 − 2𝑘𝑘%ℎ"𝑑𝑑&, 

'(
')
= *+!+",-

+#!.$(01-)3+"
− 𝑘𝑘#ℎ"𝑑𝑑𝑋𝑋 − 𝑘𝑘$ℎ"𝐴𝐴𝑋𝑋 + 𝑘𝑘!&𝐵𝐵,  

𝑑𝑑𝑍𝑍
𝑑𝑑𝑑𝑑 = 2𝑘𝑘!ℎ"𝐴𝐴𝑑𝑑 −

𝑘𝑘4𝑘𝑘5𝐵𝐵𝑍𝑍
𝑘𝑘14ℎ"(𝐶𝐶 − 𝑍𝑍) + 𝑘𝑘5

. 
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And lastly, the NOM model was coupled with the 
Selkov glycolysis mathematical model (Equations 8),

Equations 8

In Figure 4a, the numerical solution of the system of 
Equations 6 is shown. A full synchronization can be 
seen between variables u1 and u2, i.e., the oscillation 
rhythms are completely coupled [48] [75]. This type of 
behavior is common in biochemical processes carried 
out by cells that share the same microenvironment 
and can be stimulated either by a chemical or physical 
mechanism [76] [77]. On the other hand, in Figure 4b the 
gasf image of the variable u1 can be seen, while in 
Figure 4c, the gadf image of the variable u2  is shown. 
A characteristic pattern of bidirectional coupling 
between identical oscillators with periodic behavior 
can be seen in both figures.

In Figure 5a, the numerical solution for the system of 
Equations 7 is shown. Almost complete synchroniza-
tion can be seen between the variables u1, w1 and u2 [48] 

[75]. Anyway, this system of coupled differential equa-
tions is very sensitive to the value of the coupling 
parameter. Also, Figure 5b shows the gasf image of the 
variable u1, while Figure 5c shows the gadf image of 
the variable u2. In both figures, a characteristic pattern 
for a quasi-periodic system can be seen [78].

FIGURE 4. a) Numerical solution of the system of  Equations 
6 with ε1= ε2= 0.3, α1= α2= 0.03, q1= q2= 0.015, ƒ1= ƒ2= 1.0 
and k= 1.0. With u1 (0)= 0.3, w1 (0)= 0.5, u2 (0)= 0.8 and

w2 (0)= 0.7, tƒ=1 50 units of dimensionless time and 
dt=0.001. An oscillatory behavior is shown for the 4 

dynamic variables of the system and full synchronization is 
observed; b) gasf image of the variable u1; c) gadf image

of the variable u2. For both images, a characteristic pattern 
of periodic systems can be seen.

In Figure 6a, the numerical solution of the system of 
Equations 8 is shown. The phase synchronization 
between the variables u1, u2 and w1 [48] [75] can be seen. 
The NOM model oscillation rhythm causes variable u2 
to enter in-phase synchronization; however, the vari-
able w2 decays completely to zero. In the Selkov model, 
the variable u2 is related to the concentration of ATP 
(adenosine triphosphate), while the variable w2 is 
related to the concentration of ADP (adenosine diphos-
phate) [51 [52], so when said system is coupled with the 
NOM model, the synchronization process that could 
exist between the biochemical mechanism of glycoly-
sis and the Krebs cycle is emulated.
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FIGURE 5. a) Numerical solution of the system of Equations
7 with ε= 0.3, α= 0.03, q= 0.015, ƒ= 1.0, a= 1, b= 2.5 and

k= 2.5. With u1 (0)= 0.3, w1 (0)= 0.5, u2 (0)= 0.8 and
w2 (0)= 0.7, tƒ= 150 units of dimensionless time and 

dƒ=0.001.  A quasi-periodic behavior is shown for the
4 dynamic variables of the system and almost complete 

synchronization is observed between the variables u1,
u2 and w1; b) gasf image of the variable u1; c) gadf image
of the variable u2. The images reflect the quasi-periodic 

behavior of the variables u1 and u2.

FIGURE 6. Figure 6. a) Numerical solution of the system
of  Equations 8 with ε= 0.3, α= 0.03, q= 0.015, f= 1.0,

ν= 0.0285, η= 0.1, β= 1.0, γ= 2 and  k= 0.1. With u1 (0)= 0.3, 
w1(0)= 0.5, u2 (0)= 0.8 and w2 (0)= 0.7, tƒ= 150 units of 

dimensionless time and dƒ= 0.001. Oscillatory behavior
is distinguished for the variables u1, u2, and w1, as well as 

phase synchronization between them. It is recognized that 
the variable w2, for this case of the value of the parameters, 
tends to zero; b) gasf image of the variable u1; c) gadf image 
of the variable u2. The gasf image shows a typical pattern of 
a periodic oscillatory system. On the other hand, although 

the variable u2 shows an oscillatory behavior, it is also 
coupled with the variable w2, which is why a well-defined 

pattern in the gadf image is not clearly distinguished.

 Moreover, in Figure 6b the gasf image of the variable u1 
can be seen, while in Figure 6c the gadf image of the vari-
able u2 is shown. It can be distinguished that the gasf field 
shows the typical oscillatory behavior, while the image of 
the gadf field does not clearly show a distinct pattern.

The numerical solution of the equations without cou-
pling can be found in the supplementary material, as 
well as their respective gasf and gadf images (see 
Figures S1, S2 and S3). The coupling of chemical oscil-
lators to emulate the synchronization in biochemical 
processes, is of vital importance since it allows us to 

understand the complex dynamics that underlie the 
feedback processes present in biological systems. 
Mismatches in the oscillation rhythms of physiological 
processes can lead to a wide variety of metabolic prob-
lems [7], so it is essential to know the type of coupling 
that can exist between oscillators (unidirectional, 
bidirectional, linear, nonlinear, etc., [48].) and whether 
these are coupled or not at any given time.
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To  determine coupled oscillators type, the coupling 
parameter was varied between one and ten for the sys-
tem of Equations 6, between one and ten for the sys-
tem of Equations 7 and lastly, between 0.1 and 1 for 
the system of Equations 8 (because this system is 
highly sensitive to bidirectional coupling), to generate 
the images of the time series using the gaf technique. 
Once obtained, the images were embedded to subse-
quently train the supervised learning model using the 
procedure described in the materials and methods 
section (see Figure 7). Figure 8 shows the general 
Orange workflow for this procedure. In the supple-
mentary material (Tables TS-1 and TS-2), the results of 
the evaluation of different models of supervised learn-
ing are shown  (Multilayer Perceptron Neural Network 
(MLP) (Hyperparameters: Optimizer: L-BFGS-B, acti-
vation function: Logistics, regularization L2= 1, neu-
rons in one hidden layer: 10, tol= 1E-4, max_iter= 200), 
K-Nearest-Neighbors (Hyperparameters: Number of 
nearby neighbors: 5, metric: Euclidean, wight= uni-
form) and Support Vector Machine (SVM) 
(Hyperparameters: Cost= 1.0, kernel: RBF, tol= 1E-3, 
iteration limit= 100)) [33] [68], which were used to classify 
the type of coupled oscillators using the gaf images, to 
compare them with those obtained with the logistic 
regression model. When training the different super-
vised learning models using the vectors provided by 
CNN SquezeeNet as image descriptors, the logistic 
regression model presented the highest CA and F1 val-
ues for all evaluation techniques, obtaining the maxi-
mum values in the methods A, D, E and F (CA= 0.983 
and F1= 0.983). In contrast, the minimum values were 
obtained from methods B and C (CA= 0.966 and F1= 
0.967) (see supplementary Tables ST-1). When using 
CNN Inception V3 to embed the images, similar values 
of CA and F1 were obtained for the logistic regression 
models, MLP and KNN for method A (CA= 0.961, F1= 
0.961), methods B, C, D, E and F (CA= 0.950 and F1= 
0.949-0.950). The SVM model presents the highest CA 
and F1 for methods B and C (CA= 0.966 and F1= 0.966). 
Notwithstanding, for methods D, E and F, the SVM 

model presents similar CA and F1 than the rest of the 
models (CA= 0.950 and F1= 0.949) (see supplementary 
Tables ST-1). Likewise, it is possible to observe that 
there are no major differences between the results 
obtained by CNN's Inception V3 and SquezeeNet. 
Godec et al., use transfer learning to embed biomedi-
cal images and mention that this technique allows 
them to obtain high precision values in classification 
models using small databases [61]. Godec et al., also 
found no major differences in the CA and F1 values of 
the logistic regression classifier when using either the 
CNN Inception V3 or the CNN SquezeeNet to embed 
the images [61].

It is worth mentioning that sometimes when the data-
base used for training supervised learning models has 
a higher number of characteristics or descriptors com-
pared to the sample size (as is often the case in biomed-
ical databases), or is unbalanced, i.e., there is a greater 
amount of data from one class than from the rest, it is 
possible to overfit the model, leading to erroneous 
results [33] [61] [68] [69]. However, it is possible to prevent 
overfitting essentially through two procedures, the 
first is to use more data for training, decrease statistical 
bias and decrease the number of characteristics or 
descriptors, the second one is to limit the complexity of 
the model of supervised learning, employ regulariza-
tion, either penalty L2 (Ridge), L1 (Lasso) or ElasticNet 
(L1 and L2 simultaneously) and use assessment tech-
niques such as stratified cross-validation or leave-one-
out cross-validation [33] [68] [79] [80] [81] [82] [83]. Therefore, we 
have also implemented a PCA after embedding the 
images with CNN's to study the effect of the reduction 
of dimensions in the classification of the type of cou-
pled oscillators, using the same models of supervised 
learning and the same evaluation methods.

When performing the PCA implementation after 
embedding the images with CNN SquezeeNet using 
nine main components, which explain 95% of the total 
variance, the logistic regression model obtains the 
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FIGURE 7. General procedure to obtain the classification model of the type of coupled oscillators using the gaf images.
a) The numerical solution of the coupled oscillator systems is obtained by setting the parameters of the models

and varying the coupling parameter, b) subsequently gaf images are obtained from the time series of the numerical
solution of the coupled oscillators, c) after building the database, then embedding the images using Google's CNN Inception 

V3 or SquezeeNet and using PCA for dimension reduction (optional). Lastly, d) the classification model is evaluated using
the techniques: stratified holdout (70% training set / 30% testing set), 3, 5, 10, 20-fold stratified cross-validation,

and leave-one-out cross-validation.

highest CA and F1 value for method A (CA= 0.983 and 
F1= 0.983) nevertheless, it also shows the best classifi-
cation metrics for methods C, D, E and F (CA= 0.966 

and F1= 0.967), while for method B, the SVM model 
presents the best classification metrics with a CA= 
0.966 and F1= 0.966 (see supplementary material 
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FIGURE 8. Orange workflow example for training the logistic regression model as a gaf image classifier.
a) In the Orange interface, the images are imported first from a local folder using the "Import images" widget, then the 
images are embedded using the "Image embedding" widget and finally the training, validation and supervised learning 

model test. b) Window that shows the "Image Embedding" widget, which shows the CNNs that can be detected to extract 
the characteristics or descriptors of the images. The CNN of Google Inception V3 is shown by default. c) Window that shows 

the "Logistic Regression" widget. It is appreciated that it is possible to use the regularization of the sea Lasso (L1) or Ridge 
(L2). d) Window that shows the widget "Test and score." This widget shows the different evaluation techniques, which are: 

"k-fold cross-validation", "k-fold stratified cross-validation", "Random sampling", and "Leave-one-out cross-validation".
Also, it shows the classification metric by class or average.  e) Window that shows the "Confusion matrix" widget, which 

allows observing the confusion matrix of the supervised learning model. The widget allows displaying the confusion matrix 
in percentages or the number of images classified correctly and incorrectly.

Tables ST-2). Moreover, when a PCA is implemented 
after embedding with CNN Inception V3 using 21 main 
components, which explain 95% of the total variance, 
the logistic regression model shows the best classifica-
tion metrics for the evaluation methods A, C, D, E and 
F, obtaining a value of CA= 0.961 and F1= 0.960 for 

method A, while for methods C, D, E and F, a CA= 0.950 
and F1= 0.949 (see tables of supplementary material 
ST-2) were obtained. Regardless, the SVM model pres-
ents the highest values of CA and F1 for method B 
(CA= 0.966 and F1= 0.966). Having said that, it is pos-
sible to note that there are no major differences in the 
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classification metrics when using either the CNN 
SquezeeNet or the CNN Inception V3 to embed the 
images and, at the same time, there are no major dif-
ferences in the metrics of classification when using the 
descriptors connected directly from CNN or when the 
main components are extracted from them. However, 
the computational time required for the evaluation of 
the models when using PCA is shorter. The supervised 
learning models present similar values in the classifi-
cation metrics; nevertheless, the logistic regression 
model has the least complexity because it only uses 
one hyperparameter, which is used as a regularization 
or penalization [33] [67] [84] [85]. Therefore, logistic regres-
sion can be used as a classification model for the type 
of coupled oscillators. Table 2 shows the classification 
metrics for the logistic regression model for each of the 
evaluation methods, using descriptors obtained 
directly from CNN's as training data.

TABLE 2. Classification metrics for the logistic
regression model using the characteristics obtained 

directly from the CNN for the evaluation.

Tabla	1	
	

Node Authority 

H+ 1 
H2O 0.5435 

*COOH 0.5086 
Br- 0.4598 
Br* 0.4133 
CO2 0.4062 

HOBr 0.3870 
HBrO2 0.3289 
BrO3

- 0.3030 
Ce4+ 0.2939 

	
Tabla	2	

	
Evaluation 
Technique	

CNN 

Inception V3 SquezeeNet 

A CA F1 P R CA F1 P R 

B 0.961 0.961 0.963 0.961 0.983 0.983 0.984 0.983 

C 0.950 0.949 0.953 0.950 0.966 0.967 0.969 0.966 

D 0.950 0.949 0.953 0.950 0.966 0.967 0.969 0.966 

E 0.950 0.949 0.953 0.950 0.983 0.983 0.984 0.983 

F 0.950 0.949 0.953 0.950 0.983 0.983 0.984 0.983 

A 0.950 0.949 0.953 0.950 0.983 0.983 0.984 0.983 

	
Tabla	3	

	
Evaluation 
Technique	

CNN 

Inception V3 
(21 PC, explained variance: 95%) 

SquezeeNet 
(9 PC, explained variance: 95%) 

A CA F1 P R CA F1 P R 

B 0.961 0.961 0.963 0.961 0.983 0.983 0.984 0.983 

C 0.950 0.950 0.953 0.950 0.950 0.951 0.957 0.950 

D 0.950 0.950 0.953 0.950 0.967 0.967 0.970 0.967 

E 0.950 0.950 0.953 0.950 0.967 0.967 0.970 0.967 

F 0.950 0.950 0.953 0.950 0.967 0.967 0.970 0.967 

A 0.950 0.950 0.953 0.950 0.967 0.967 0.970 0.967 

	
	
	

Likewise, Table 3 shows the classification metrics for 
the same model, using the descriptors obtained from 
the PCA as training data. At this point, it is natural to 
ask what evaluation method should be used if all 
methods have similar ranking metrics. For this work, 
we chose method D because multiple experiments 
have been carried out that demonstrate that the best 
way to obtain high values in the metrics, be it classifi-
cation or regression, is using stratified 10-fold 

cross-validation, even when there is the possibility of 
computation to increase fold number in the evalua-
tion of supervised learning models [33] [86]. In addition, 
as can be seen in Tables 2 and 3, for method D the 
same values of the classification metrics are obtained 
using the descriptors extracted directly from CNN 
Inception V3 and those obtained from the implemen-
tation of the PCA ( CA= 950, F1= 0.949-0.950) for train-
ing. When using the descriptors extracted directly 
from CNN SquezeeNet for training, the classification 
metrics CA= 0.983, and F1= 983 were obtained, while 
those obtained due to the implementation of the PCA 
are CA= 0.967 and F1= 0.967, which means that there 
is no significant difference. In conclusion, there are 
no major differences between the use of the descrip-
tors extracted from the implementation of the PCA 
after embedding the images with one or the other 
CNN. This shows that the dimensions reduction does 
not substantially affect the precision of the super-
vised learning model and, conversely, allows for a 
better generalization of it [61].

TABLE 3. Classification metrics of the logistic
regression model using the characteristics obtained

from the application of the PCA.

Tabla	1	
	

Node Authority 

H+ 1 
H2O 0.5435 

*COOH 0.5086 
Br- 0.4598 
Br* 0.4133 
CO2 0.4062 

HOBr 0.3870 
HBrO2 0.3289 
BrO3

- 0.3030 
Ce4+ 0.2939 

	
Tabla	2	

	
Evaluation 
Technique	

CNN 

Inception V3 SquezeeNet 

A CA F1 P R CA F1 P R 

B 0.961 0.961 0.963 0.961 0.983 0.983 0.984 0.983 

C 0.950 0.949 0.953 0.950 0.966 0.967 0.969 0.966 

D 0.950 0.949 0.953 0.950 0.966 0.967 0.969 0.966 

E 0.950 0.949 0.953 0.950 0.983 0.983 0.984 0.983 

F 0.950 0.949 0.953 0.950 0.983 0.983 0.984 0.983 

A 0.950 0.949 0.953 0.950 0.983 0.983 0.984 0.983 

	
Tabla	3	

	
Evaluation 
Technique	

CNN 

Inception V3 
(21 PC, explained variance: 95%) 

SquezeeNet 
(9 PC, explained variance: 95%) 

A CA F1 P R CA F1 P R 

B 0.961 0.961 0.963 0.961 0.983 0.983 0.984 0.983 

C 0.950 0.950 0.953 0.950 0.950 0.951 0.957 0.950 

D 0.950 0.950 0.953 0.950 0.967 0.967 0.970 0.967 

E 0.950 0.950 0.953 0.950 0.967 0.967 0.970 0.967 

F 0.950 0.950 0.953 0.950 0.967 0.967 0.970 0.967 

A 0.950 0.950 0.953 0.950 0.967 0.967 0.970 0.967 

	
	
	

 Figure 9 shows the confusion matrix of the logistic 
regression model trained with the descriptors obtained 
from applying the PCA after being embedded with 
CNN Inception V3 and using the evaluation method D. 
18 of the 20 images of the coupling of the NOM and 
Brusselator Oscillators (O-B) have been correctly clas-
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sified, while two images have been erroneously classi-
fied, one as a coupling between the NOM and Silkov 
(O-G) oscillators and another as a coupling between 
the identical NOM (O-O) oscillators. Furthermore, 19 
of the O-G coupling images have been correctly classi-
fied, while one has been erroneously classified as O-O 
coupling. All O-O coupling images have been correctly 
classified.

FIGURE 9. Confusion matrix of the logistic regression 
method using the CNN Inception V3 as an image descriptor 

extractor and applying a reduction of dimensions using
the PCA technique (21 PC, explained variance: 95%) 

(evaluation method D). It is observed that 18 of the 20 
images of the O-B coupling have been classified correctly, 

while two have been erroneously classified, one as the O-G 
coupling and the other as the O-O coupling. On the other 
hand, the coupling shows that 19 of the 20 images of the 

O-G coupling have been correctly classified, while one has 
been classified as an O-O coupling. All images in the O-O 

coupling have been correctly classified.

FIGURE 10. Confusion matrix of the logistic regression 
method using as descriptor extractor of CNN SquezeeNet 
images and applying a reduction of dimensions using the 

PCA technique (9 PC, explained variance: 95 %). It is 
observed that 19 of the 20 images of the O-B coupling have 

been correctly classified, while one has been classified as 
O-O coupling. While, 1 of the 20 images of the O-G coupling 
has been incorrectly classified as O-O coupling. All images 

in the O-O coupling have been classified correctly.

Figure 10 shows the confusion matrix of the same 
model trained with the descriptors obtained from 
applying the PCA after being embedded with CNN 
SquezeeNet and using the evaluation method D. In the 
confusion matrix, it is possible to observe that 19 of the 
20 images of the O-B coupling have been correctly clas-
sified, while one has been incorrectly classified as O-O 
coupling. Similarly, 1 of the 20 images of the O-G cou-
pling has been incorrectly classified as O-O coupling. 
All images in the O-O coupling have been correctly 
classified. The decision to use one or the other CNN for 
embedding the images will depend on whether, as 

users, we want our images to be sent to an external 
server for embedding. For privacy and security rea-
sons, we prefer them to be embedded locally [61].

 CONCLUSIONS
In the framework of Systems Biology, mathematical 

modeling of biochemical mechanisms involved in dif-
ferent physiological processes is of vital importance 
because it allows us to understand the non-linear 
dynamics that underlie these phenomena. This is why 
the use of mathematical tools and computational sys-
tems for the analysis of the complex feedback mecha-
nisms present in living systems is necessary. The CNT 
is a mathematical tool that allows studying these 
mechanisms with a holistic approach and provides 
valuable information on each of the entities that make 
up the system [26] [87].

When determining the authority structural property 
of the complex network obtained from the BZ reaction 
mechanism proposed by Györgyi et al., and using it as 
the centrality criterion, the variables with the highest 
relevance were identified, i.e., those chemical species 
that have the greatest flow of information and that 
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could participate in the emergence of collective proper-
ties of the system. Identification of these variables led 
to the construction of a nonlinear system of differential 
equations similar to the reduction of the FKN model 
proposed by Field and Noyes (Oregonator) and which 
also explains the phenomenology of the BZ reaction. 
Hence, this result answers the question of using mathe-
matical tools to reduce complex reaction mechanisms 
without losing generality. Therefore, it is possible to use 
this methodology in the study of nonlinear dynamics 
present in biochemical and physiological processes.

On top of that, by applying this methodology to bio-
logical systems, it is possible to translate any biochem-
ical or physiological process to a mathematical model 
and study the phenomena of synchronization between 
different regulatory mechanisms [88] to decipher the 
complex dynamics that underlie living systems with a 
systemic approach.

The effect of coupling between oscillators of different 
nature can be clearly seen in the images obtained 
using the gaf technique, which can be used to train a 
supervised learning model to classify the type of cou-
pled oscillators. The extraction of descriptors from gaf 
images through pre-trained CNNs (transfer learning) 

allows obtaining high precision values in the evalua-
tion of different classification models; however, it is 
also possible to couple the pre-trained CNNs with the 
PCA to obtain high values in the classification metrics, 
comparable with the values of the metrics obtained by 
using only pre-trained CNNs as a descriptor extraction 
method. In particular, using the CNN's Inception V3 
and SquezeeNet as extractors for descriptors of gaf 
images and obtaining the principal components of 
these descriptors, allows training classification mod-
els such as logistic regression and obtaining CA and 
F1-score values above 0.94 for different evaluation 
methods.

All things considered, the methodology proposed in 
this work can facilitate the determination of synchro-
nization and desynchronization states in complex real 
biochemical and physiological mechanisms to recog-
nize a possible correlation between these states and 
the emergence of different complex diseases.
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