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ABSTRACT
Coding sequences are widely studied for their relevance in protein synthesis. However, higher organism genomes, 
such as human genomes, has a small amount of them, and a larger proportion of non-coding sequences. ENCODE and 
Epigenomic Roadmap projects discovered that regulatory functions are carried out in the non-coding regions of the 
human genome. These regulatory functions are part of the regulatory machinery that yields different gene expres-
sion profiles, thus, different cell lines. Whereas different environmental elements, i. e. histone modifications, DNA 
methylation, and other epigenomic phenomena, determine the regulatory function of genome part, the sequences’ 
composition where these functions take place could also influence regulatory machinery. In this work, we explore 
the non-coding regulatory sequences and lexica build with subsequences between 3 and 16 nucleotides to evaluate 
the difference between the sequence composition of the regulatory regions in the cell lines. Our results show that 
the lexica corresponding to the regulatory regions are different based on their complexity/degeneracy, moreover, the 
lexica of regulatory regions in different cell lines are also different. These features suggest that non-coding sequences 
are an active element of the regulatory machinery and the histone code that are involved in cell differentiation.
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RESUMEN
Las secuencias codificantes han sido ampliamente estudiadas por su relevancia en la síntesis de proteínas. Sin em-
bargo, los genomas de organismos complejos, como el humano, tiene una porción menor de estas secuencias y una 
mayor proporción de secuencias no codificantes. Los proyectos del ENCODE y Epigenomic Roadmap describieron 
que las funciones reguladoras se llevan acabo en las regiones no codificantes del genoma humano. Estas funciones 
reguladoras son parte de la maquinaria reguladora que produce diferentes perfiles de expresión genética, por tanto, 
diferentes líneas celulares. Mientras diferentes elementos del entorno, como las modificaciones en las histonas, 
metilación del ADN y otros fenómenos epigenéticos, determinan la función reguladora que tienen una porción del 
genoma, la composición de la secuencia donde estas funciones son llevadas a cabo también podrían influir en la 
maquinaria reguladora. En este trabajo, se exploraron las secuencias de las regiones no codificantes y los léxicos 
generados con las subsecuencias entre 3 y 16 nucleótidos, para evaluar las diferencias entre la composición de las 
secuencias de las regiones reguladoras en las líneas celulares. Los resultados muestran que los léxicos correspon-
dientes a las regiones reguladoras son diferentes con base en su complejidad/degeneración, así mismo, los léxicos 
de las regiones reguladoras en distintas líneas celulares son también distintos. Estos detalles sugieren que las se-
cuencias no codificantes son elemento activo de la maquinaria reguladora y del código histónico que participan en 
la diferenciación celular.  

PALABRAS CLAVE: Complejidad de Léxico; Regiones Reguladoras; Biología de Códigos
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INTRODUCTION
DNA sequences are carriers of hereditary material in 

all living organisms [1]. The hereditary information in 
DNA is stored as a code made up of four chemical 
bases, adenine (A), guanine (G), cytosine (C), and thy-
mine (T), written in triletter words (codons) without 
delimiters that are decoded after copying into a com-
plementary RNA (transcription) into a matching pro-
tein sequence in a process called translation. In the 
2000s, the Human Genome Project estimated that 
only approximately 2% of human genome consists of 
coding sequences and the remaining large part of the 
DNA (non-coding regions) does not serve as a template 
for protein sequences [2].

However, ENCODE and Epigenomic Roadmap consor-
tiums evidenced that there are regulatory functions in 
the apparently non-functional sequence of the human 
genome [3, 4]. Both consortiums located the regulatory 
regions in 127 cell lines based on epigenomic profiles 
[4, 5], and thus, they implemented an experimental 
whole-genome validation of the histone code.

The histone code is a set of rules that maps the his-
tone modifications to chromatin packaging events and 
leads to regulatory functions in gene expression [6–8]. 
Altogether, these events build a regulatory machinery 
that depends on the environmental context, shows 
diverse gene expression profiles and, hence, a diver-
sity of cell lines [9, 10].

Elements of the previously mentioned context, that 
possibly determine a cell line, are locations where the 
chromatin packaging events happen [11–15].

A way for studying such phenomena is suggested 
within an emergent discipline, Code Biology, which 
considers life events, for instance, as maps between 
organic signs and organic meanings [16–18]; in this work 
represented by genomic sequence and regulatory 
function, respectively. The Code Biology approach 

includes a methodology for identifying organic codes 
consisting of three steps: (i) demonstrating the exis-
tence of  two sets linked by an organic code; (ii) iden-
tifying the decoder of the organic code, called adaptor; 
and (iii) validating an arbitrary nature of the organic 
code (compare, for instance, Hofmeyr [19]).

In particular, in [20], the histone code was examined 
from this viewpoint: “we try to show how simple com-
binations of essential elements such as histone modifi-
cations can participate in sophisticated cellular features 
such as the structure of the genome. Here code is iden-
tified, where an input system (histone modifications) is 
translated into an output system (chromatin states) via 
adaptors (epigenetic regulators or transcription factors). 
Such a code has distinct importance in gene regulation 
and consequently for the cellular phenotype”.

In this exploratory work, we implement genomic sig-
nal processing and natural language techniques to 
explore the sequences of regulatory regions and evi-
dence that indeed these sequences play an important 
role in the regulatory machinery.

METHODS
In this work, the regulatory regions of three types of 

human cell lines are being explored to identify differ-
ences between the regulatory machineries in these 
cell lines at the sequence level. A workflow of the 
methodology in this work shown in Figure 1.

In order to perform this preliminary analysis, we 
choose the cell lines: H1 cells, Primary T CD8+ naive 
cells and Brain hippocampus middle, that represent 
pluripotent cells, first culture, and differentiated cells.

We download the files of the three cells correspond-
ing to 14 regulatory regions (Table 1) proposed by the 
Epigenomic Roadmap Map project from the database 
of the mentioned project (http://www.roadmapepig-
enomics.org/data/, August 2018). 
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FIGURE 1. Methodology workflow.

TABLE 1. Regulatory regions proposed by
the Epigenomic Roadmap Consortium [4].

Tabla	1	
	
	

Regulatory regions 
Abbreviation Name 

TssA Active TSS 
TssAFlnk Flanking active TSS 

TxFlnk Transc. at gene 5’and 3’ 
Tx Strong transcription 

TxWk Weak transcription 
EnhG Genic enhancers 
Enh Enhancer 

ZNF/Rpts ZNF genes + repeats 
Het Heterochromatin 

TssBiv Bivalent/poised TSS 
BivFlnk Flanking bivalent TSS/Enh 
EnhBiv Bivalent enhancer 
ReprPC Repressed Polycomb 

ReprPCWk Weak repressed Polycomb 

	
	

Tabla	2	
	
	

Periodicity (nt) Interval of frequencies (Hz) 
1 0.330 – 0.500 
2 0.250 – 0.330 
3 0.200 – 0.250 
4 0.167 - 0.200 
5 0.143 – 0.167 
6 0.125 – 0.143 
7 0.111 – 0.125 
8 0.010 – 0.111 
9 0.091 – 0.010 

10 0.083 – 0.091 
11 0.077 – 0.083 
12 0.071 – 0.077 
13 0.067 – 0.071 
14 0.062 – 0.067 
15 0.067 – 0.071 
16 0.062 – 0.067 

	

The downloaded files contain the location indices of 
the regulatory region in the human genome. Based on 
the indices, we extracted the corresponding sequences 
and mapped them into a genomic signal by the Voss 
method. In this work, we keep both representations of 
the DNA, sequences and the genomic signals.

The Voss method is a tetradimensional graphic of the 
DNA sequences that represent in each dimension a 
nucleotide and value the presence x[n]=1 and absence 
x[n]=0 of the respectively nucleotide. For example, the 
genomic signal of the sequence “GTCAGTCGTAA” is:

A=[00010000011], C=[00100010000],
G=[10001001000], T=[01000100100].

Symbolic representation
We classify sequences into 14 groups, where each 

group contains the sequences with one of the regula-
tory functions from Table 1. As asserted in the 
Introduction, a DNA sequence can be symbolically 
represented as a chain of four letters (A, T, C, and G). In 
this representation, a word of length k or k-mer is an 
arbitrary subsequence that contain k consecutive 
nucleotides. It is easy to see that the number of words 
in a sequence of length l is equal to l-k+1. Hereinafter, 
we will call these words the k-lexicon of the sequence.

According to this approach, we calculate the k-lexica 
for each sequence for the k values from 3 to 16 nucleo-
tide towards to identify relevant lexica in the non-cod-
ing regulatory sequences. Then we calculate the rela-
tive frequency for each word in each of the k-lexica to 
obtain the probability distribution of the lexicon and 
order the frequencies in the descending order. 

The obtained distribution is the so-called Zipf’s law 
distribution (Figure 2). The Zipf’s law is a power law 
that describes many types of data studied in the 
physical and social sciences, among them the lan-
guage [21], and states, for instance, that the frequency 
of any word is inversely proportional to its rank in the 
frequency table. In the specific case of the language, 
the Zipf’s law is a measure of the complexity/degener-
acy of the language and an expression of the least 
effort principle of the vocabulary [22, 23]. We will adopt 
the equation of the Zipf’s law distribution in the fol-
lowing form:
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FIGURE 2. The Zipf’s Law distribution of the first 200 words (except 3 nucleotides that has
a maximum of 64 words lexicon) in the n-lexicon from 3 nucleotides to 16 nucleotides.
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where w is a word in the lexicon; r(w) the absolute 
frequency of the word; A a constant; b the value of the 
exponent characterizing the Zipf’s distribution. In this 
work we call b the lexicon complexity, and mean the 
higher the value of b the higher the complexity/degen-
eracy of the vocabulary [24]. After all, g(w) denotes the 
relative frequency of the word w.

Thereafter, we linearize the Zipf’s distribution by 
dividing each value with its respective inverse. The 
result distribution is now a distribution with linear 
behavior, which slope is the lexicon complexity. We do 
a linear regression by the least square method to calcu-
late the lexicon complexity of each sequence for its 
vocabularies from 3 nucleotides to 16 nucleotides.

Numerical representation
For each genomic signal, we calculate its periodo-

gram. A periodogram is a technique to obtain the fre-
quency spectrum of a signal, in this case, a genomic 

signal. This technique enhances the spectrum and 
fixes it to a certain length, that is important to this 
work because of the variable lengths in the sequences 
of this work. We fix all the periodogram to the length 
of 500 values.

The equation to calculate the periodogram is given by 
Eq. 2 where X[n] represents the periodogram of the 
genomic signal, N the number of points, x[n] is the 
genomic signal, in this work the Voss representation, 
and f the frequency. An example of a periodogram is 
shown in Figure 3.

�
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After all, we divide the periodogram into frequency 
bands that correspond to periodicities in the genomic 
signal, recalling that the inverse of the frequency is 
the periodicity. We have then 14 intervals of frequen-
cies (Table 2) that correspond to the same values of 
length, from k=3 to k=16, that we calculate for the lex-
icon complexity.
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FIGURE 3. An example of a periodogram of one genomic signal. Bands of frequencies
represent the pattern information of a length in the sequence correspondent to certain

nucleotides i.e. 0.33-049 frequencies represent the patterns of 3 nucleotides length.
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TABLE 2. Intervals of frequency
and their corresponding periodicities.

Tabla	1	
	
	

Regulatory regions 
Abbreviation Name 

TssA Active TSS 
TssAFlnk Flanking active TSS 

TxFlnk Transc. at gene 5’and 3’ 
Tx Strong transcription 

TxWk Weak transcription 
EnhG Genic enhancers 
Enh Enhancer 

ZNF/Rpts ZNF genes + repeats 
Het Heterochromatin 

TssBiv Bivalent/poised TSS 
BivFlnk Flanking bivalent TSS/Enh 
EnhBiv Bivalent enhancer 
ReprPC Repressed Polycomb 

ReprPCWk Weak repressed Polycomb 

	
	

Tabla	2	
	
	

Periodicity (nt) Interval of frequencies (Hz) 
1 0.330 – 0.500 
2 0.250 – 0.330 
3 0.200 – 0.250 
4 0.167 - 0.200 
5 0.143 – 0.167 
6 0.125 – 0.143 
7 0.111 – 0.125 
8 0.010 – 0.111 
9 0.091 – 0.010 

10 0.083 – 0.091 
11 0.077 – 0.083 
12 0.071 – 0.077 
13 0.067 – 0.071 
14 0.062 – 0.067 
15 0.067 – 0.071 
16 0.062 – 0.067 

	

where Ek is the energy ascribed to the periodicity o 
pattern length k; fo is the initial frequency of the inter-
val; fu the upper frequency of the interval; X[n] is the 
periodogram of the genomic signal; and Nk the number 
of points in the periodogram corresponding to pattern 
length k frequencies.

RESULTS AND DISCUSSION
The 14 regulatory regions used in this work corre-

spond to 1’009,178 sequences, distributed as follows: 
363,513 from cell line H1 cells; 249,377 from cell line 
Primary T CD8+ naive cells; and 396,288 from cell line 
to Brain hippocampus middle. The lengths of the 
sequences vary from 200 to 2,000 nucleotides.

For each sequence, we calculate 14 average energy, 
and, respectively, 14 lexicon complexity values corre-
sponding to the patterns of lengths between 3 and 16 

Then, we calculate the average energy of each inter-
val to evaluate the average potential capacity to encode 
information in the evaluated pattern length [25], adopt-
ing the following average energy equation
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nucleotides. The average energy and the lexicon com-
plexity are indicators that point out to the potential 
capacity, and respectively, information encoding qual-
ity/degeneracy in DNA sequences [26–30].

Figure 4 displays the potential capacity against qual-
ity dynamics for the regulatory sequences of the cell 
line H1 cells and their k-lexicons with k=6. The histo-
grams of the energy (upper left, Figure 4) can be inter-
preted the way that the potential to encode information 
at the length of 6 nucleotides tends to be similar in the 
sequences of any regulatory region. The same behaviour 
can be observed in the rest of the lengths (see figures 
S1-S13) that likely indicates that there is no difference 
in codifying information for any word length.

However, the lexicon complexity for k=6 (right, Figure 
4) behaves in a different way for different regulatory 
regions. The dotted lines represent the common value 
of lexicon complexity in the sequences of the 14 regu-
latory regions. This feature suggests that there is a 

FIGURE 4. Energy against the 6-lexicon complexity (lower left) of the DNA sequences for 
he 14 regulatory regions of cell line H1 cells. The histograms correspond to the distribution

of the energy (upper) and the distribution of the lexicon complexity (right).
The dotted lines represent the most common value of the respective regulatory region.

difference, at least for this length, between the regula-
tory regions in the information encoding quality. Let 
us note that biological information encoding quality in 
DNA sequences could be interpreted as a degree of 
degeneracy.

Degeneracy is a biological phenomenon that means 
the ability of elements that are structurally dissimilar 
to perform the same function or yield the same output 
[26, 27]. In this work, this notion represents the ability of 
multiple sequences with a certain potential capacity 
to codify a unique biological function, a regulatory 
function.

The different degeneracy values in the regulatory 
regions indicate that the diversity of the words in their 
respective lexicons is different depending on the 
region, and meaning, as well as the numbers of words 
(signs) that encode such regulatory function (signifi-
cant). As for their codes, i. e. the relationships between 
corresponding sets of signs and significant, they may 
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be different, too. Nevertheless, in this work we don’t 
explore the specific words for each of the single regu-
latory function lexicons, and, thus we describe the 
code of each regulatory region as a whole.

The similar behavior, i. e. different degeneracy values 
in different regulatory regions, can be observed for 
k=4, 5, and 7 nucleotides, meanwhile, for the other 
lengths, the degree of degeneracy tends to be similar 
for all the regulatory regions. This interesting fact can 
be explained in the following way: a small word length 
(1, 2, and 3 nucleotides) enables a brief lexicon and the 
number of regulatory regions coded would be corre-
spondingly small, while a bigger word length (above 7), 
leads to a wider vocabulary, and, thus, to an enormous 
amount of energy needed to maintain the code. On the 
one hand, it contradicts the less effort principle of 

FIGURE 5. Distribution of the lexicon complexity for the regulatory regions Flanking active TSS,
Enhancer, Heterochromatin, Bivalent enhancer and Repressed Polycomb in the cell lines H1 cells,

Brain hippocampus middle, and Primary T CD8+ naive cells. The bold line represents the mean value
of the lexicon complexity of the sequence in the respective cell line for each regulatory region,

while the shadow areas represent the standard deviation of the lexicon complexities values.

nature; on the other hand, a very specific code obtained 
with the number of signs approximately equal to the 
number of significances would be easier to “hack” 
what is a risk for the robustness of an organism.

Although the evidence of different degrees of degen-
eracy refers to the feasibility of a code for the regula-
tory sequences, it does not yet indicate that the 
sequence itself plays a role in the context of the regu-
latory machinery that determines the cell lines.

In order to explore the influence of the sequence’s 
composition, we are comparing lexicon complexities 
of the five regulatory regions (Flanking active TSS, 
Enhancer, Heterochromatin, Bivalent enhancer, and 
Repressed Polycomb) that the Epigenomic Roadmap 
uses to propose the lineage of the cell lines.
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FIGURE 6. Percentage of words covered by the lexicons between 2 and 4 lengths by regulatory regions.

Figure 5 shows value distributions from 3 to 8 lexicon 
complexities for the three cell lines used in this work. 
These results present differences between the degree 
of degeneracy of the regulatory regions of the different 
cell lines. This is an interesting finding hinting that 
the sequences could act to establish the regulatory 
machinery that determines a cell line.

Moreover, another notable result is the decreasing 
deviation of the lexicon complexity when the length of 
the studied words increases. As stated earlier, a larger 
length of words enables producing very specific words, 
meanings, leading to a specialized lexicon. In this con-
text, it is natural thinking that two sequences have to 
be similar in their biological functionality when shar-
ing a highly specific word.

However, it may be a coincidence and the vocabulary 
may still not be sufficiently robust for encoding a bio-
logical function. Otherwise, in the case of a shorter 
word length, the generated vocabulary would be nar-
row and the set of shared words between sequences 
may contain the whole vocabulary (Figure 6).

This likely leads to an ambiguous code and a highly 
probable regulatory function. At the same time, lexi-
cons with medium words lengths (4 to 6 nucleotides) 
provide enough word diversity/degeneracy degree 
relationship to support a robust code that may encode 
the regulatory function sequences and determine a 
cell line.

CONCLUSION
The role that non-coding regions plays in DNA 

sequences is fuzzy due to the diversity and apparent 
randomness of the sequences. This leads to the notion 
that these regions are a quiescent part of the genome. 
However, consortiums as ENCODE, and Epigenomic 
Roadmap have identified genome regulatory func-
tions in the environment of this part. At the same 
time, these consortiums do not explore the role of 
sequences’ composition in the determination of the 
corresponding regulatory function.

Our results show important differences between the 
lexica of sequences of regulatory regions. While the 
potential capacity to encode the biological function is 
similar for any word length, the suitable range of word 
lengths is between 4 and 7 nucleotides in order of pro-
viding sufficient diversity to support the robustness of 
a code. This is feasible since the degree of degeneracy 
in these lexica is high enough for the code not to be 
ambiguous or highly specialized, i. e. the code is robust 
enough and, hence, not easy to “hack”.  Furthermore, a 
broader study could identify the specific words, syn-
tax, and the code that establishes the regulatory func-
tion in a sequence, and consequently, determines the 
cell line to be developed, i. a. taking into account the 
aspect of the noise immunity of the code [31].
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SUPPLEMENTARY FIGURES

 FIGURE S1. Energy against the 3-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy
(upper) and the distribution of the lexicon complexity (right). The dotted lines represent the most

common value of the respective regulatory region.

 FIGURE S2. Energy against the 4-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy
(upper) and the distribution of the lexicon complexity (right). The dotted lines represent the most

common value of the respective regulatory region.
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 FIGURE S3. Energy against the 5-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy
(upper) and the distribution of the lexicon complexity (right). The dotted lines represent the most

common value of the respective regulatory region.

 FIGURE S4. Energy against the 7-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy
(upper) and the distribution of the lexicon complexity (right). The dotted lines represent the most

common value of the respective regulatory region.



REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA | Vol. 40 | No. 1 | ENERO - ABRIL 201914

 FIGURE S5. Energy against the 8-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy
(upper) and the distribution of the lexicon complexity (right). The dotted lines represent the most

common value of the respective regulatory region.

 FIGURE S6. Energy against the 9-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy (upper)

and the distribution of the lexicon complexity (right). The dotted lines represent the most
common value of the respective regulatory region.
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 FIGURE S7. Energy against the 10-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy
(upper) and the distribution of the lexicon complexity (right). The dotted lines represent the most

common value of the respective regulatory region.

 FIGURE S8. Energy against the 11-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy
(upper) and the distribution of the lexicon complexity (right). The dotted lines represent the most

common value of the respective regulatory region.
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 FIGURE S9. Energy against the 12-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy
(upper) and the distribution of the lexicon complexity (right). The dotted lines represent the most

common value of the respective regulatory region.

 FIGURE S10. Energy against the 13-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy
(upper) and the distribution of the lexicon complexity (right). The dotted lines represent the most

common value of the respective regulatory region.
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 FIGURE S11. Energy against the 14-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy
(upper) and the distribution of the lexicon complexity (right). The dotted lines represent the most

common value of the respective regulatory region.

 FIGURE S12. Energy against the 15-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy
(upper) and the distribution of the lexicon complexity (right). The dotted lines represent the most

common value of the respective regulatory region.
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 FIGURE S13. Energy against the 16-lexicon complexity (lower left) of the DNA sequences for the 14
regulatory regions of cell line H1 cells. The histograms correspond to the distribution of the energy
(upper) and the distribution of the lexicon complexity (right). The dotted lines represent the most

common value of the respective regulatory region.


