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ABSTRACT
One of the most used bacteria in the Quorum Sensing (QS) experimental works is the Vibrio harveyi, which is used 
as reporter bacteria to detect the Autoinducers-2 (AI-2) activity of other bacteria. Nevertheless, the description of 
its QS mechanism by the mathematical modeling is an approach still unexploited. For biological systems, it is neces-
sary to consider the high variability of the experimental data, thus identifiability and parametric reliability analy-
ses must be performed before a model could be used. The following work describes a methodology for parameter 
fitting and parametric identifiability analysis in a model that describes the dynamics of AI-2 in V. harveyi bacteria. 
Identifiability analyses showed that all parameters are identifiable, but parametric dependency analyses showed 
two linearly dependent parameters. According to our results, the model is adequate to describe the AI-2 dynamics 
in V. harveyi.      
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RESUMEN
Una de las bacterias más utilizadas en los trabajos experimentales de detección de quorum (QS) es la Vibrio harveyi, 
que se utiliza como bacteria reportera para detectar la actividad de Autoinductores-2 (AI-2) de otras bacterias. Sin 
embargo, la descripción de su mecanismo de QS por medio del modelado matemático es un enfoque aún no explo-
tado. En el caso de los sistemas biológicos, es necesario considerar la alta variabilidad de los datos experimentales, 
por lo que deben realizarse análisis de identificabilidad y fiabilidad paramétrica antes de que un modelo pueda ser 
usado. El siguiente trabajo describe una metodología para el ajuste de parámetros y el análisis de la identificabili-
dad paramétrica en un modelo que describe la dinámica de la AI-2 en las bacterias V. harveyi. Los análisis de iden-
tificabilidad mostraron que todos los parámetros son identificables, pero los análisis de dependencia paramétrica 
mostraron dos parámetros linealmente dependientes. De acuerdo con los resultados, el modelo es adecuado para 
describir la dinámica AI-2 en V. harveyi.

PALABRAS CLAVE: Modelado matemático; Vibrio harveyi; AI-2; Estimación de parámetros; dependencia paramétrica
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INTRODUCTION
 Quorum Sensing (QS) is a mechanism of bacterial 

gene regulation used to coordinate collective behav-
iors in a population [1]. Among the known bacteria that 
use the QS mechanism, the Vibrio harveyi is one of the 
most versatile, mainly because uses the Autoinducer-2 
(AI-2) as a signaling molecule which is known as an 
interspecies signaling molecule [2]. Despite many mod-
els have been proposed to describe the QS mechanism 
[3], just a few of these models are focused on QS mech-
anism that uses AI-2 as a signaling molecule [4, 5].

Mathematical modeling has become an important 
tool in many sciences, mainly because of its capability 
to describe different aspect and relations between the 
elements of a system. Normally, mathematical models 
contain a set of parameters which either can be 
inferred from experimental data, or need to be esti-
mated, and before a mathematical model can be con-
sidered reliable, the unknown parameters need to be 
estimated [6].

When experimental data from the real system is 
available, the model parameters can be estimated by 
minimizing a cost function which measures the error 
between the experimental data and model outcome. 
Nevertheless, because the quality or quantity of exper-
imental data, the model parameters can present esti-
mation problems, like non-identifiability or parameter 
uncertainty. These problems are very common in 
mathematical models that describe biological sys-
tems, due to their stochastic nature and the noise 
added by the experimental measurements [3]. 

Some methodologies have been proposed and suc-
cessfully used to tackle these problems. Raue et al. 
present a methodology to identify the non-identifi-
ability based on the likelihood profile, this approach 
can determinate the practical and structural non-iden-
tifiability [7]. Additionally, Xue et al. present a method-
ology to determinate the parameter uncertainty if the 

experimental data distribution is unknown [8]. These 
approaches were satisfactory used in [9–11], where were 
applied in parameter estimation of mathematical mod-
els which describe biological systems. In both models, 
parameters practically non-identifiable were identi-
fied and fixed for further estimations, which enhanced 
the parametric estimation. 

Here, we propose a mathematical model that describes 
the production and uptake of Autoinducer-2 (AI-2) in 
bacteria V. harveyi.  In our model, the parameters are 
identifiable but exist a parametric dependency. We 
found that fixing a dependent parameter reduces the 
confidence interval of the remaining parameters, 
enhancing the parameter identifiability. Based on the 
estimation results, the model can be useful to describe 
the AI-2 dynamics of V. harveyi. Unlike other QS math-
ematical models, ours describes the AI-2 dynamics as 
a function dependent on the bacterial growth, which 
could offer a new approach to develop control mecha-
nism based on the bacterial growth media.

METHODOLOGY

Quorum Sensing in Vibrio harveyi
The QS mechanism of V. harveyi has been well char-

acterized and a brief description is presented in Figure 
1. Briefly, V. harveyi uses three different signaling 
molecules, CAI-1, HAI-1, and AI-2, produced by the 
CqsA, LuxM, and LuxS proteins, respectively. These 
molecules freely cross the cell membrane and accumu-
late in the extracellular space till reach a threshold and 
are sensed by membrane proteins. Each signaling mol-
ecule has a cognate membrane protein, CqsS for CAI-1, 
LuxN for HAI-1, and LuxP-LuxQ for AI-2. Once sensed, 
the membrane proteins reduce the phosphorylation 
activity over the LuxU, and this, in turn, reduces the 
LuxO phosphorylation. This reduction activates the 
LuxR protein expression which represses and activates 
many genes, like genes related to the bioluminescence 
and biofilm formation [12–14].
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Mathematical model
In the V. harveyi QS mechanism three different AIs 

are produced and detected, nevertheless, to simplify 
our model, we only considered the AI-2 dynamic. Our 
model was made based on the next assumptions i) the 
AI-2 production by the LuxS synthase is dependent on 
cell growth [15]; ii) it is considered that all produced AI-2 
freely cross the membrane to the extracellular space.

The V. harveyi QS model is composed of the Gompertz 
function to adjust the V. harveyi growth curve (X), and 
the extracellular AI-2 concentration (A). The model is 
described as follows:

FIGURE 1. The Quorum sensing mechanism in V. harveyi. 
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The bacterial growth dynamic is described using a 
Gompertz function in Equation (1), where X0 is the 
initial bacterial concentration, C is the asymptote of 
the function, and represent the maximum bacteria 
concentration, B is the slope of the function which 
represents the growth rate, and M is the saturation 
time.

Equation (2) describes the A dynamics, μA is the AI-2 
synthesis. μXA is the uptake of A by the bacteria. μA is 
presented below. 
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where kA is the A velocity production, and km1 is an 
affinity constant. The uptake of A is described by a 
function μXA as follows:
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where kXA is the uptake rate by the bacteria, and km2 is 
an affinity constant. 

Parameter estimation
Parametric estimation of the mathematical model can 

be understood as the search of values for parameters 
set (θ) that minimize the difference between the model 
outcome yi and experimental data yi as close to zero as 
possible. This search is restricted by the system dynam-
ics, algebraic restrictions and systems constraints. 
Focused on this aim, the Sum of Square of Weighted 
Residues (SSWR) has been used successfully in others 
works as cost function [10, 16, 17], and is defined as follows.
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where j and i represents the number of variables and 
experimental data, respectively, y is the set of experi-
mental data points, and y is the model outcome. Since 
the integration routine of Equation (2) requires dense 
data sets at different times depending on adaptive step 
size, inputs in each estimation are approximated by a 
linear interpolation. The minimization of Equation (5) 
implies a non-linear optimization problem with sev-
eral variables that can be solved using a global optimi-

–
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zation algorithm. In this work, we used the Differential 
Evolution (DE) algorithm [18] to estimate the optimal 
parameter values. 

Parameter identifiability
A parameter is identifiable if can be determined by a 

value within a confidence interval with a desired prob-
ability. The parameter identifiability plays an import-
ant role for analysis of parametric models because the 
parameters define the model performance and its 
adaptability under different conditions [7, 19]. 

In order to analyze the parameter identifiability in 
Equations (1) and (2), we used the approach based on 
the profile likelihood presented by Raue et al. [7]. This 
approach offers insights into the parametric identifi-
ability. Additionally, this approach explores the practi-
cal and structural non-identifiability, two phenomena 
related to parameters.

Briefly, the approach consists on defining a set of val-
ues for each parameter, centered at its optimized value, 
and re-optimize the remaining parameters minimizing 
the SSWR [7]. The objective of this approach is to explore 
the parameter search space around the optimal value 
of each parameter, while the model outcome is re-opti-
mized estimating the remaining parameters [9].

Parameter uncertainty and dependency
Due to the stochastic nature of biological systems, 

when a mathematical model that describes a biological 
phenomenon is developed, is necessary to consider 
the data variability. Additionally, the measuring meth-
ods normally add noise to the measurements, incre-
menting the data variability. The bootstrap method is 
a statistical tool to determinate the parameters accu-
racy and parameters dependency. 

For parametric bootstrap is necessary to know the 
data distribution, which is normally unknown. To 
tackle this issue, the weighted bootstrap method 

assigns to the cost function a vector of random weights 
from an exponential distribution with mean and vari-
ance one [8]. This method has been used successfully in 
others similar works [9, 10]. In each weighted bootstrap 
repetition, the model parameters are re-optimized, 
and after enough repetition, the confidence interval is 
calculated. The 95% confidence interval for each 
parameter is calculated between the 2.5 and 97.2% 
quantiles. From the confidence interval, the distribu-
tions of parameters and dependency among parame-
ters are plotted.

NUMERICAL RESULTS 
Initially, the parameters were estimated to find a set 

of parameters values that adjust the model outcome to 
experimental data. The experimental data were taken 
from [14], using the Plot Digitizer program to obtain the 
numerical data from the graphics [20]. Because the 
growth function is independent, firstly we estimate 
the growth function parameters and used the best fit 
values as constants for estimations of remaining 
parameters. The best fit values of growth function 
parameters are presented in Table 1. 

TABLE 1. Parameter values of the growth function.
These values are fixed in further estimation.

Tabla	1	
	
	

Parameter (units) Best fit 

𝑋𝑋! (𝑂𝑂𝑂𝑂!"") 0.00091 

𝐶𝐶 (𝑂𝑂𝑂𝑂!"") 3.2357 

𝐵𝐵 (𝑡𝑡) 0.3514 

𝑀𝑀 (𝑡𝑡) 10.7743 

	
	

Tabla	2	
	
	

Parameter 
(units) Best Fit 

Confidence interval 
2.5% quantile 97.5% quantile 

𝑘𝑘!  (𝜇𝜇𝜇𝜇 ∙ 𝑡𝑡!!) 4.6361 4.3507 15.0 

𝑘𝑘!!(𝑂𝑂𝑂𝑂!"") 0.0025 0.0021 0.0312 

𝑛𝑛! 3.5412 0.8991 4.3129 

𝑘𝑘!"  (𝑡𝑡!!) 0.4769 0.4477 2.7818 

𝑘𝑘!! (𝑂𝑂𝑂𝑂!"") 0.1674 0.0704 1.9998 

𝑛𝑛! 3.0957 0.2375 5.8004 

	
	

Tabla	3	
	
	

Parameter 
(units) Best Fit 

Confidence interval 
2.5% quantile 97.5% quantile 

𝑘𝑘!  (𝜇𝜇𝜇𝜇 ∙ 𝑡𝑡!!) 4.6361 1.8900 4.6649 

𝑘𝑘!!(𝑂𝑂𝑂𝑂!"") 0.0025 0.00001 0.0072 

𝑛𝑛! 3.5412 0.2023 4.4556 

𝑘𝑘!"  (𝑡𝑡!!) 0.4769*   

𝑘𝑘!! (𝑂𝑂𝑂𝑂!"") 0.1674 0.1582 2.5 

𝑛𝑛! 3.0957 0.8611 4.1206 

	
	

The remaining model parameters were estimated 
using the values in Table 1, and the best fit value set 
was used to calculate the profile likelihood [7], this 
method has been successfully used in previous similar 
works [9, 10]. For each parameter, a vector is defined 
with values centered at its best-estimated value and 
use to explore its parameter space. The profile likeli-
hood results can be seen in Figure 2.  The graphics 
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show a concave shape that means there is a parameter 
value that minimizes the model error, and the model 
parameters are identifiable.

FIGURE 2. Profile likelihood graphics.

After identifiability analysis, we perform the weighted 
bootstrap method to analyze the parameters uncer-
tainty and parameter dependency and compute the 
confidence interval. Firstly, 500 weighted bootstraps 
repetitions were made, re-optimizing the parameters 
on each repetition. Then, the 95% confidence interval 
was calculated, using the 2.5 and 97.5% quantiles, and 
the intervals are presented in Table 2. 

TABLE 2. Parameters confidence interval and best fit.

Tabla	1	
	
	

Parameter (units) Best fit 

𝑋𝑋! (𝑂𝑂𝑂𝑂!"") 0.00091 

𝐶𝐶 (𝑂𝑂𝑂𝑂!"") 3.2357 

𝐵𝐵 (𝑡𝑡) 0.3514 

𝑀𝑀 (𝑡𝑡) 10.7743 
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𝑘𝑘!! (𝑂𝑂𝑂𝑂!"") 0.1674 0.0704 1.9998 

𝑛𝑛! 3.0957 0.2375 5.8004 
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(units) Best Fit 

Confidence interval 
2.5% quantile 97.5% quantile 
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Parameter kA is the parameter with the larger interval 
confidence. On the other hand, km1 has the smaller 
interval confidence of all parameters. That means, kA 
can variate along a long interval and the model is still 
suitable, but the smaller interval confidence of km1 
means that the model is more sensible to it. Based on 
the confidence interval, the distribution of parameters 
is depicted in Figure 3.

FIGURE 3. Graphs of the parameter distribution.

In Figure 4, parameters kA and kXA show a linear 
dependency, increasing the value of kA, the estima-
tion of kXA also increases.  These parameters can not 
be estimated independently. This behavior is consis-
tent with the real system, if the velocity production of 
AI-2 (kA) increases, is necessary that the AI-2 uptake 
rate (kXA) also increases to balance the extracellular 
AI-2 concentration.

To improve the parameter estimation, one of these 
parameters must be fixed for further estimations. This 
approach has been successfully used to reduce the 
parameter estimation process, which helped to reduce 
the computational cost and improves the model fit [10]. 
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In this work, they fix the parameters based only on the 
profile likelihood because they found that some 
parameters were structurally non-identifiable. In our 
work, profile likelihood of all parameters showed that 
all parameters are identifiable, but parametric depen-
dency analysis showed up that some parameters are 
dependent on each other. Fixing a dependent parame-
ter helps to improve the model fit and to reduce the 
parameters confidence interval [9].

Using this approach, we fixed kXA=0.4769 for further 
estimations and to analyze the remaining model 
parameters. The selection of kXA as the fixed parame-
ter was to analyze the impact of this approach in a 
parameter with a large confidence interval. Once kXA 
fixed the likelihood of remaining is computed, and the 
graphics are depicted in Figure 5. There is a remark-
able improvement in the identifiability of most of 
parameters. Confidence interval, parameter distribu-
tions and dependency among parameters were re-cal-
culated after a new set of 500 weighted bootstraps 
repetitions. The confidence interval and best fit 
parameters value are depicted in Table 3.

FIGURE 5. Profile likelihood graphics
after fixing the parameter kXA.

TABLE 3. Parameters confidence interval
and best fit value after estimations with kXA fixed.
*means that parameter was fixed in estimations.

Tabla	1	
	
	

Parameter (units) Best fit 

𝑋𝑋! (𝑂𝑂𝑂𝑂!"") 0.00091 

𝐶𝐶 (𝑂𝑂𝑂𝑂!"") 3.2357 

𝐵𝐵 (𝑡𝑡) 0.3514 

𝑀𝑀 (𝑡𝑡) 10.7743 
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2.5% quantile 97.5% quantile 
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𝑘𝑘!!(𝑂𝑂𝑂𝑂!"") 0.0025 0.0021 0.0312 

𝑛𝑛! 3.5412 0.8991 4.3129 

𝑘𝑘!"  (𝑡𝑡!!) 0.4769 0.4477 2.7818 

𝑘𝑘!! (𝑂𝑂𝑂𝑂!"") 0.1674 0.0704 1.9998 
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𝑘𝑘!"  (𝑡𝑡!!) 0.4769*   

𝑘𝑘!! (𝑂𝑂𝑂𝑂!"") 0.1674 0.1582 2.5 

𝑛𝑛! 3.0957 0.8611 4.1206 

	
	

FIGURE 4. Parameter dependency.

Remarkably, the best-fit values are the same as that of 
the previous estimations. Fixing the parameter kXA 
does not affect the parameter estimation but reduce 
the computational cost and improves the confidence 
interval.

Also, the estimated parameters get a distribution 
more defined, as can be seen in Figure 6, where the 
parameter kA varies less when parameter kXA is fixed.
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FIGURE 6. Graphs of the parameter distribution after
fix parameter kXA in weighted bootstrap repetitions.

FIGURE 7. Parameter dependency
after estimations fixing kXA.

M

FIGURE 8. Model Outcome. (A) is the cellular growth,
and (B) is the AI-2 extracellular concentration. 

The reduction of confidence interval also improved 
the parameter distribution, which is visually evident 
in parameters kA, km1, and km2 in Figure 6.

Nevertheless, as in Figure 3 there is one tail distribu-
tion in parameters, which could be attributed to the 
estimation method used is stochastic and its random 
nature.

The parameter dependency is presented in Figure 7. 
Parameters n1 and n2 present a behavior like parame-
ters kA and kXA, which seems to be dependent. 
Nevertheless, based on their distribution (Figure 6) 
and confidence interval, we considered that the 
parameter dependency is not significative to affect the 
model performance or parameters identifiability. After 
parameter analysis, we consider that by fixing kXA the 
remaining parameters are identifiable.

The model performance is presented in Figure 8, the 
model outcome in blue lines, and experimental data in 
closed circles [14]. Parameters values are presented in  
Table 1 for Equation (1), and Table 3 for Equation (2). 
As can be seen, the model presents a good perfor-
mance to adjust the experimental data, despite there 

a)

b)



C. E. Torres-Cerna et al. Mathematical Modeling of the Quorum Sensing in Vibrio harveyi 9

are misalignments when the experimental data change 
drastically, about the hour eight for AI-2 dynamics, 
and hour 15 for the cellular growth.

CONCLUSIONS
In this paper, we presented a mathematical model that 

describes the AI-2 dynamics as a function of the bacte-
rial growth in the V. harveyi bacteria, and the model 
viability was probed by the parameter identifiability 
analysis as can be seen in Figure 8, our model can rep-
resent adequately the experimental data from [14]. 

Despite the identifiability analysis showed that all 
parameters were identifiable, the parameter depen-
dency analysis showed that kA and kXA  were depen-
dents, additionally, the dependent parameters do not 
present a clear distribution.

Despite both parameters are identifiable, they can 
increase or decrease arbitrary without enhance the 
model adjustment. 

Fixing kXA, the identifiability and confidence interval 
of remaining parameters was improved and the distri-
bution of  kA showed a clear tendency to a centered 
value. This is a new way to tackle the identifiability 
problem and enhance the model parameters viability.

As future work, we propose a deeper analysis about 
the influence of bacterial growth on the AI-2 dynam-
ics. Additionally, further analysis can be realized for a 
better understanding about the effect of a dependent 
parameter over the other, this could be useful to con-
trols the parameters tendency, which can mean a sav-
ing of resources during the experiments. 
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