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ABSTRACT

The identification and discrimination of functional sequences or muta-
tions is very helpful in the medical area. Promoter and splice-junction 
identification, gene finding, DNA or Aminoacid database searching 
are some examples. Pattern recognition algorithms are candidates to 
perform this tasks. In this work we present a model, based on AlphaBeta 
associative memory and NeedlemanWunsch algorithm, to correctly 
recall altered version of learning patterns with one or more of the follow-
ing modifications: insertions, deletions, and mutations, very common 
alterations in DNA and Aminoacid sequences. Moreover, this model 
preserve one of the most important advantages in associative memo-
ries, the correct recall of the fundamental set. To test the performance 
of the algorithm on bioinformatics and biomedical applications, the 
model presented here was tested using two datasets; one from the 
UCI repository; refered to promoter identification and the second one 
to using the genome of the Variovorax paradoxus organism obtained 
from the NCBI repository.

Key Words: Promoters, aminoacid sequences retrieval, DNA sequence 
retrieval, associative memories, biomedical, bioinformatics, Variovorax 
paradoxus.

RESUMEN

La identificación y discriminación de secuencias funcionales son de 
mucha ayuda en la investigación en el área biomédica. Identificación 
de promotores, identificación de zonas de empalme, búsqueda de 
genes y búsqueda de secuencias de ADN y aminoácidos en bases 
de datos son algunos ejemplos de aplicaciones en dicha área de 
investigación. Dada la naturaleza del problema, los algoritmos de 
reconocimiento de patrones son candidatos naturales para llevar a 
cabo las tareas antes mencionadas. En el presente trabajo se propone 
un nuevo modelo de memorias asociativas Alfa-Beta, basadas en el 
modelo original de memorias y el algoritmo global de alineamiento 
de secuencias desarrollado por Needleman-Wunsch, que permiten la 
recuperación de patrones alterados con respecto de los patrones de 
aprendizaje con alguna de las siguientes alteraciones: mutaciones, 
inserciones y borrados; alteraciones comunes en secuencias de DNA 
y aminoácidos. El presente modelo preserva una de las más impor-
tantes ventajas en memorias asociativas, la recuperación completa 
del conjunto fundamental. Para probar el desempeño del modelo en 
aplicaciones tanto de bioinformática como biomédica, se utilizaron 
dos bases de datos; una obtenida del repositorio de la Universidad de 
California en Irvine; sobre secuencias que contienen promotores y la 
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INTRODUCTION

In the later decades, very important scientific ad-
vances in the field of molecular biology have been 
achieved. Thanks to the enormous ammounts of 
information derived from these advances, there 
has arisen a need to process such information in a 
faster manner and just as effectively, or more, than 
by an expert. This gives birth to a new branch of sci-
ence, known as Bioinformatics: a multidisciplinary 
field which combines, among others, two important 
fields of science, molecular biology and computer 
sciences1. Its main objective is to apply the advan-
tages offered by computer sciences to molecular 
biology, given the fast development, efficiency and 
efficacy of the algorithms of the former2.

Among the first and foremost problems boarded 
by Bioinformatics are: the development of data-
bases, protein sequence alignment, DNA string 
sequencing, protein structure prediction, protein 
structure classification, promoter identification, 
splice-junction zone localization, and filogenetic 
relationships determining3,4.

Deoxyribonucleic acid (DNA) and proteins are 
biological macromolecules made up of long chains 
of chemical components. On one hand, DNA is 
made up of nucleotides, of which there are four: 
adenine (A), cytosine (C), guanine (G), and thymine 
(T), denoted by their initials. Also, DNA plays a fun-
damental role in different biochemical processes 
of living organisms, such as protein synthesis and 
hereditary information transmission from parents 
to children5.

Promoters are the regions in the DNA that regu-
lates the expression of the proteins and are regularly 
before each gene6-8.

On the other hand, proteins are polypeptides 
formed inside cells as sequences of 20 different 
aminoacids9, which are denoted by 20 different 
letters. Each of these 20 aminoacids is coded by 
one or more codons5. The chemical properties dif-
ferentiating the 20 aminoacids make them group 
together to conform proteins with certain tridimen-
tional structures, defining the specific functions of 
a cell8.

segunda del genoma del organismo Variovorax paradoxus obtenida 
del repositorio de la NCBI.

Palabras clave: Promotores, recuperación de secuencias de aminoá-
cidos, recuperación de secuencias de ADN, memorias asociativas, 
bioinformática, Variovorax paradoxus.

Several diseases are generated by point muta-
tions, insertions or deletions in the DNA. Thus, pattern 
recognition plays an important role in medical area. 
The recognition of the mutations leads to a better 
understanding of the disease and the development 
of new techniques and equipment. An example was 
the Influenza outbreak in México City, where the use 
of Bioinformatics gave important information about 
the pandemia, and lead to the development of 
different techniques and equipment for its identifi-
cation and vaccination10,11.

The topic of associative memories has been an 
active field of scientific research for some decades, 
attracting the attention in some research areas for 
the great power they offer despite the simplicity of 
its algorithms. The most important characteristic 
and, at the same time, fundamental purpose of 
an associative memory, is to correctly recall whole 
output patterns from input patterns, with the possi-
bility of having the latter altered, either by an addi-
tive, subtractive, or mixed alteration12-14. This kind of 
alterations could be classified as mutation based 
on their definition, but the insertions and deletions 
was not treatable by this algorithm.

An associative memory has two phases: the 
learning phase, which is the process that allows 
the memory to be built by learning associations 
of patterns, and the recalling phase, in which the 
memory is presented with input patterns that can 
be present in the fundamental set or not, and the 
memory output, the corresponding associated 
pattern, according to the associations learned13,14.

Associative memories, and specifically alpha-
beta associative memories, are a powerful compu-
tational tool in pattern recognition due to the sim-
plicity of their algorithms, their strong mathematical 
foundation, and the high efficacy shown by them 
in pattern recalling and classification15.

In this paper we propose the use of a robust al-
pha-beta associative memory model for retrieval of 
sequences from a Aminoacid-database. This model 
has the capability of managing learning and recall-
ing patterns of different dimensions. Moreover, this 
model can handle insertion, deletion and mutation 
in sequences, keeping its capability of complete 
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recall of the fundamental set. These characteristics 
are not present in the models found in our research 
of the state-of-art.

This paper is organized as follows. Tools is focused 
on explaining the Alpha-Beta heteroassociative 
memory model which is the main tool of this paper. 
Robust Retrieval Associative Memory contains the 
core proposal and its theoretical support. Results 
is devoted to the experimental results and finally, 
Conclusion and Future work addresses thoughts 
derived from this work.

TOOLS

Alpha-Beta associative memories

Here we introduce the basic notation of associa-
tive memories as presented in15. An associative 
memory  is a system that relates input and 
outputs patterns. Each input vector  forms an 
association with a corresponding output vector 
. The  -th association will be denoted as . 
Associative memory  is represented by a matrix 
whose component in the -th row and  -th column 
is denoted . The  is generated from a set of 
a priori known associations, called the fundamen-
tal set. The fundamental set is defined as follows: 

 where  the cardinality of 
the fundamental set. The patterns that belong to 
the fundamental set are called fundamental pat-
terns. If it holds that , then 

 is autoassociative, otherwise it is heteroassocia-
tive. In this latter case it is possible to establish that 

 for which . When feeding an 
unknown fundamental pattern  with  
to an associative memory , it happens that the 
output corresponds exactly to the associated pat-
tern , it is said that recall is correct.

The heart of the mathematical tools used in 
the Alpha-Beta model, are two binary operators 
designed specifically for these memories. These 

operators are defined in15 as follows: First, it is de-
fined the sets  and , then the 
operators  and  are de-
fined in Table 1.

There exist two types of heteroassociative Alpha-
Beta memories, these are: type Max  and type 
Min . The main difference of this two types is their 
tolerance to different kinds of alterations. For the 
generation of both types it will used the operator 

, which is defined as follows:

 where

 and .

Alpha-Beta heteroassociative memories with 
correct recall

Alpha-Beta heteroassociative memories, unlike 
original and many other models15,13, guarantee the 
correct recall of the fundamental set16,17. This section 
shows the Alpha-Beta heteroassociative memory 
type min, with which the complete recall of the 
fundamental set is guaranteed16. The Alpha-Beta 
heteroassociative memory type max is obtained 
by duality.

Alpha-Beta heteroassociative memory type min

Let   be an Alpha-Beta heteroassociat ive 
memor y type Min and  
i t s  f u n d a m e n t a l  s e t  w i t h   a n d 

.  The num-
ber of the components with value equal to zero of 
the  -th row of  is given by:  where  
and its components are defined as:

(1)

and the  components conform the min sum vec-
tor with 16.

a. Learning phase

Let  and  be input and output vec-
tors, respectively. The corresponding fundamental 
set is denoted by . Which 
is built according with the following conditions: 
the  vectors are built with the zero-hot codifi-
cation: assigning for the output binary pattern 

 the following values: , and  for 

Table 1. Alpha and Beta operators.

 x y (x,y) x y (x,y)

 0 0 1 0 0 0
 0 1 0 0 1 0
 1 0 2 1 0 0
 1 1 1 1 1 1
    2 0 1
    2 1 1
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 where   
And, to each  vector correspond one and only 
one  vector.

For each , from the pair  build 
the matrix: 

 
then the min binary 

operator  is applied to the resulting matrices. 
Therefore, the  matrix is obtained as follow:

 
where the component in 

the  -th row and  -th column is given by:

b. Recalling phase

A pattern  is presented to  the  opera-
tion is done and the resulting vector is assigned 
to a vector called . The -th 
component of the resulting column vector are: 

It is necessary to build the min sum vector , 
therefore the corresponding  is given as: 

(2)

where 

Robust retrieval associative memory

In this section, we describe a model, merging Alpha-
Beta associative memories16 and Needleman–Wun-
sch algorithm18. With this it is possible to handle input 
patterns of different sizes for both learning and recall 
phase, keeping the main property: correct recall of 
the fundamental set.

First at all is important to define this: Let  
with , and  be a row 
vector. Let  be the dimension of the new 
smaller vectors extracted from . The vectorial 
partition operation  is defined as the set of 
binary row vectors  -dimensional and is denoted 
as follow:

(3)

such that  where  

with  and .

Robust Alpha-Beta heteroassociative memory 
type min

1. Learning phase

Let  and  with , be an input and 
output vectors, respectively. The corresponding fun-
damental set is denoted by  
such that  where ,  
with  and . Moreover, the  vectors 
are built with the zero-hot codification: assigning 
for  the following values: , and  for  

 whe re    
And to each  vector correspond one and only 
one  vector.

For each , from the couple  
build the matrix:  then, the min binary 
operator  is applied to the matrices. Therefore, the 

 matrix is obtained as follow:

  where the  -th

component is given by: 

2. Recall phase

A fundamental pattern , that can or not be of 
different size from other fundamental patterns, is 
presented to , then the vector  is built as 
follows:

First, the vectorial partition operation is applied to 
each  and to  where  and  belong 
to the fundamental set.

(4)

(5)

Given , ,  

with  and , the -th component of the 

output vector  is:

(6)
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then the  is the matrix built as follow:

 (7)

where:

(8)

With  with  being 
a penalization known as gap, and  being a fac-
tor to increase the result of Alpha-Beta memory 
recognition.

Once the  vector has been built, the sum min 
vector  is computed. It contain in its  th 
component the amount of zeros of the -th row of 
the  matrix.

(9)

where  and its components are defined as:

 
. Therefore the corresponding  is 

given as:

where 

Example 1: Let  be the input patterns

and the corresponding output vectors

the output vectors are built with the Zero-Hot 
codification, and to each output pattern corre-
sponds one and only one input pattern, therefore 
the fundamental set is expressed as follow:

Once the fundamental set is made, the learning 
phase of the new algorithm is applied:

The binary operator min  is applied to the ma-
trices obtained before to build the matrix :
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Once the  matrix is generated, to recall  with 
 particularly  is presented 

to . First, the vectorial partition operator is applied 
to vector  and  with :

Then, for each  and  and 
, the  matrices are built as follow:

Then, the matrix  is:

The calculus of each component for the matrices 
 is not explicitly expressed, however the 

matrices are shown here:

the resulting vector could be or not an output 
pattern from the fundamental set, in other words, 
it could be an ambiguous pattern. According with 
the recall phase, the resulting vector is known as  
then the min sum vector  must be built:
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Table 2. Relational table.

 Aminoacid character Binary learning sequence Binary recalling sequence 

 F 100000010000000100000000 100000000000000000000000
 S 011100000000001000000000 010000000000000000000000
 T 011000000000000000000000 001000000000000000000000
 N 010100000000000000111000 000100000000000000000000
 K 000010100110000000000100 000010000000000000000000
 * 000000000000000000000000 111111111111111111111111
 E 000010100110000000101000 000000100000000000000000
 Y 100000010000000100010000 000000010000000000000000
 V 000000001001010000000010 000000001000000000000000
 Z 000010100110000000101000 000000100000000000000000
 Q 000010100110000000010100 000000000010000000000000
 M 000000001001010000000010 000000000001000000000000
 C 000000000000100000000000 000000000000100000000000
 L 000000001001010000000010 000000000000010000000000
 A 010000000000001000000000 000000000000001000000000
 W 100000010000000100000000 000000000000000100000000
 X 000000000000000000000000 011000000000001000000000
 P 000000000000000001000000 000000000000000001000000
 B 000100100100000000101000 000000000000000000101000
 H 000100010010000000010000 000000000000000000010000
 D 000100100100000000101000 000000000000000000001000
 R 000010000010000000000100 000000000000000000000100
 I 000000001001010000000010 000000000000000000000010
 G 000000000000000000000001 000000000000000000000001

after that, the output pattern :

due to the min imum va lue of   where 
 is .

RESULTS

This section reports an experimental study of the 
model. The experimentation was made for both 
aminoacid and DNA sequences. For aminoacid 
sequences the dataset was created from NCBI re-
pository and for DNA sequences the datasource was 
obtained from the Machine Learning Repository of 
the University of California in Irvine20. The proposed 
model requires that  and  are given. A simple 
implementation of the model is used to test it. In 
the following test,  and  are used along 
some small-scale data sources.

As mentioned before the learning data sources of 
aminoacid sequences was obtained from the NCBI. 
The organism selected was Variovorax paradoxus 
S110 chromosome 1. In order to use the proposed 
model, it is necessary to relate the aminoacid 
characters into binary sequences, in Table 2 shows 
such relation. They were created using the known 
blosum62 substitution matrix19. Actually, there are 
two mappings, one for coding the learning patterns 
and other for recalling patterns. The mappings were 
built by sorting the 24 characters (20 aminoacids 
and 4 wildcard) and assigning to each one a 
twenty four dimensional vector, each component 
correspond to one of the 24 characters of the 
aminoacids. Then it was assigned a number one in 
the component where in the blosum62 matrix the 
character pair has a positive value, On otherwise. Its 
main objective is to give information to the model 
about the most probably changes between ami-
noacids. To experimentally show that this proposal 
fulfills the correct recall property of the fundamental 
set, we have built four different fundamental sets of 
cardinality p. With these fundamental sets the as-
sociative memories are built. Then, the same set of 
learning patterns are presented to the memory. The 
recall percentages are shown in Table 3.
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It is also important to know how the algorithm 
behave when altered patterns are presented to the 
associative memory. Based on a fundamental set 
of the file p50.txt, six altered versions of it were built. 
The alterations of the fundamental set are shown in 
Table 5 and the results are shown in Table 4.

Table 5 shows the alteration made randomly to 
the original fundamental set.

1. Alteration: indicates the percentage of changes 
in the sequence. The changes could be muta-
tion, insertion, and deletion

2. Mutation: percentage of substitution of an ami-
noacid by other

3. Insertion: percentage of insertion of an amino-
acid in the sequence

4. Deletion: percentage of deletion of an amino-
acid in the sequence

In the other hand, to test the performance of 
the model with DNA sequences, the promoters 

and splice-junction samples were taken from the 
«E. coli promoter gene sequences (DNA) with as-
sociated imperfect domain theory» and «Primate 
splice-junction gene sequences (DNA) with asso-
ciated imperfect domain theory» datasources, 
consecutively.

The promoter database has 106 instances split 
into two classes, promoters and non-promoters, 53 
instances to each one. The sequences are formed 
by 57 nucleotides and its binary codification is 
shown in Table 6. According with21 the One-Hot 
codification is one of the most benefical.

Table 7 shows the percentage of recall on DNA 
datasets altered with some percentage of the al-
teration defined before. It is clear that, even when 
the alterations change the original sequence in 
both composition and dimension, the new model 
support this kind of modification and preserve its 
recall capacity.

Table 8 shows the alterations made to the DNA 
sequences from the original datasource.

Finally, it could be interesting to use the experi-
mental datasources with the original model of as-
sociative memories. However, by the nature of the 
original model it is not possible due to the fact that 
the input and output vectors should be all the same 
dimension.

Table 3. Correct recall of the fundamental set.
 
 Data source p % recalled

 p50.txt 50 100
 p100.txt 100 100
 p150.txt 150 100
 p200.txt 200 100

Table 4. Altered pattern recall.

 Data source p % recalled

 P70B50M50.txt 50 2
 P70M50I50.txt 50 0
 P70M100.txt 50 100
 P90M100.txt 50 100
 P90B50M50.txt 50 94
 P90M50I50.txt 50 94

Table 5. Percentage of alteration to patterns per file.
 
Data % % % %
Source alteration mutation deletion insertion

P70B50M50.txt 30 50 50 0
P70M50I50.txt 30 50 0 50
P90B50M50.txt 10 50 50 0
P90M50I50.txt 10 50 0 50

Table 6. DNA binary codification.
 
 Nucleotide Code

 A 1000
 T 0100
 C 0010
 G 0001
 D 1011
 N 1111
 S 0101
 R 1001

Table 7. Percentage of DNA sequence recall.
 

 Data source % recalled

 Promoter.txt 100
 PromoterP70M100.txt 100
 PromoterP90M50I50.txt 98
 PromoterP90M100.txt 100
 PromoterP90M50B50.txt 100
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Table 8. Percentage of alteration to patterns per file.
 

 Data Source % alteration % mutation % deletion % insertion

 Promoter.txt 0 0 0 0
 PromoterP70M100.txt 30 100 0 0
 PromoterP90M50I50.txt 10 50 0 50
 PromoterP90M50B50.txt 10 50 50 0

CONCLUSION AND FUTURE WORK

In this work, a model for retrieval of aminoacid and 
DNA sequences from a data sources is proposed. 
The model ensures the correct recall of the fun-
damental set, this is the complete set of patterns 
learned. Moreover, unlike previous models of asso-
ciative memories, it is capable of supporting some 
degree of the three type of alterations on the pat-
terns: mutation, deletion, and insertion, as shown on 
Table 4. To do so, a relational table for aminoacids 
character to binary sequences is proposed. It is 
possible to use this model in any medical task that 
requires analysis of DNA or aminoacid sequences; 
no matter if some sequences has alterations. This 
model is capable of handling patterns of different 
sizes for learning and recall.

As future work it is important to develop an ef-
ficient software that implements the given model. 
It might be helpful to use the heteroassociative 
memory type Max to compare the advantages and 
disadvantages against the proposed model. Test 
a modified version of the model using the Smith-
Waterman algorithm for local alignment. Develop 
experiments with several ranges of evolutionary 
proximity.
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