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ABSTRACT

Sometimes when a myocardium infarct occurs, small abnormali-
ties in conduction are present over the infarcted zone. These com-
ponents are known as Ventricular Late Potentials (VLP) and are as-
sociated with ventricular arrhythmias and sudden cardiac death.
They are components of ventricular conduction activity that are
attenuated, fragmented and delayed over the QRS complex of
an electrocardiogram (ECG). VLP are often used as non-invasive
markers of arrhythmia risk and while their detection is difficult, there
are non-invasive methods proposed for improved detection. The
classical time domain method is the most often used for VLP de-
tection in the analysis of high resolution ECG (HRECG) on post-inf-
arction patients. Nonetheless, it brings low predictive values, high
sensibility to noise and excludes in its analysis patients with bundle
branch blockage. In this paper the different morphologies of VLP
are used for deducting a bi-dimensional Kernel in the time-frequen-
cy domain, so that it can be adapted to changing VLP structures
according to each post-infarct patient. Also, both the reduction of
false negatives and an increase in true positives of the automatic
diagnosis can be achieved. A database of 132 HRECG signals was
analyzed and a substantial increase in predictive values was ob-
tained over diagnostics. In the analysis, attenuated sensibility to
noise compared to the classical temporal domain method was
also shown.

Key Words:
Ventricular Late Potentials, High Resolution ECG, Time-Frequency
Analysis, Dependent Kernel, Post-Infarction, SAECG.

RESUMEN

Después de que ocurre un infarto de miocardio, a veces se pre-
sentan pequeñas anormalidades de conducción sobre la zona
infartada. A estos componentes se les llama potenciales tardíos
ventriculares (VLP), y se les asocia con las arritmias ventriculares y
muerte cardiaca súbita. Son componentes en la actividad de con-
ducción ventricular que se atenúan, se fragmentan y se retrasan
sobre el complejo QRS del ECG. Los VLP son muy usados como
marcadores no invasivos de riesgo arrítmico, y aunque su detec-
ción es muy difícil, existen propuestas de métodos no invasivos
para mejorarla. El método del dominio temporal clásico es el más
utilizado para la detección de VLP, en el análisis de señales ECG
de alta resolución (HRECG) de pacientes post-infartados. Sin em-
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INTRODUCTION

In the event of survival to a myocardium infarct,
the zone of affected cardiac tissue can produce
in most cases malign arrhythmia, being the most
dangerous those located at the ventricles because
of their ability to produce sustained ventricular ta-
chycardia and/or ventricular fibrillation and conse-
quently bring sudden death.

Malignant ventricular tachycardia is a patholo-
gy present in a great number of patients who are in
a partial myocardium infarct recovery process1.
From these events a great interest is born in many
scientist and researchers to study new effective pre-
diction techniques for ventricular tachycardia risk
factors that may permit a cardiologist to prevent
sudden death in post-infected patient.

The most effective methods to date are invasive
in nature, so they are inconvenient for requiring sur-
gery to the patients2. To avoid risk factors brought
by surgery, some researchers have proposed the
use of some electrophysiological characteristics
that behave as arrhythmia risk flags for the devel-
opment of non-invasive methods of sudden cardi-
ac death.

The tissue zone damaged by an infarct goes
through a physiological process in a healing effort.
In any event, the tissue makes a partial recupera-
tion and its effects carry in many cases lethal con-
sequences because part of the electrical activity
originated from the cardiac depolarization wave
front suffers attenuation, fragmentations and time
lag, bringing malignant ventricular tachycardia3.
These irregularities in ventricular conduction have
been denominated ventricular late potentials

(VLP)4,5, and can be registered by superficial tech-
niques of electrocardiography (ECG) known as high
resolution ECG (HRECG)6.

HRECG are used with much frequency by most
non-invasive methods mentioned in literature, such
as time domain7, frequency domain8, spectro-tem-
poral9, and others10-13. The most accepted but also
standardized method for detecting VLP is the time
domain, known as classic time domain method14.
Unfortunately, it gives low predictive values and
post-infarcted patients with branch blockage must
be excluded from analysis15.

As time progresses, it is known of more research
being made with the objective of refining VLP de-
tection and analysis where techniques as complex
as time-frequency representations16,17, and wave-
let transform are used18,19. All these search one com-
mon objective, to raise the predictive values of
automated diagnosis. Perhaps the wavelet trans-
form is one of the techniques to have brought best
results in VLP detection20. On the other hand, in all
these proposals there is a lack of normalization and
standardization regarding their ventricular conduc-
tion abnormality criteria, for such a reason, varied
results are currently being generated.

METHODOLOGY

The structural morphology of VLP varies from pa-
tient to patient, because it depends on the type
and age of the infarct, it also depends on the pa-
tients genetic and physiological characteristics.
These morphologic variations and its noise sensibil-
ity are some of the elements generating false pos-
itive and false negative VLP detection. In Figure 1

bargo, presenta valores predictivos bajos, alta sensibilidad al ruido y
excluye en su análisis a los pacientes con bloqueo de rama. En este
trabajo se prueban las distintas morfologías que presentan los VLP
para la obtención de un Kernel bidimensional en tiempo-frecuen-
cia, que se adapte a las estructuras cambiantes de los VLP para
cada paciente post-infartado, y logre disminuir los casos negativos
falsos, pero que aumente los casos positivos verdaderos en el diag-
nóstico automatizado. Se analizó una base de datos de 132 señales
HRECG, y se obtuvieron resultados substanciales en cuanto al au-
mento de los valores predictivos del diagnóstico. En el análisis, tam-
bién se observó una menor sensibilidad al ruido que en el método
del dominio temporal clásico.

Palabras clave:
Potenciales tardíos ventriculares, señales ECG de alta resolución,
análisis tiempo-frecuencia, kernels dependientes, post-infarto,
SAECG.
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are shown twelve VLP taken over the epicardic inf-
arcted zone, where it is easy to notice differences
between each other.

This paper proposes a technique applying ker-
nel design for time-frequency analysis such that a
kernel may be adapted in an optimal manner to
the VLP changing structural characteristics present
into a particular HRECG.

KERNEL FUNCTIONS

The ambiguity function (AF), is a bidimensional func-
tion, related to the winger distribution (WD), it is ob-
tained by the following mathematic procedure:

            

Both WD and AF produce non-desirable artifacts
over a time-frequency domain, which are called
interference terms17. These artifacts can be attenu-
ated by means of bidimensional filters, known as
kernel functions (KF).

KF work as low pass filters over the AF in a bidi-
mensional domain as follows.

A time-frequency representation (TFR) is a mem-
ber of the Cohen class, if and only if it can be de-
duced from a WD convolution a KF, i.e.:

This convolution can be a simple multiplication if
it is taken to a frequency domain by means of the
bidimensional Fourier transform, this way we have:

If the AF interference terms are concentrated out
from the origin, and the signal terms are over and
near the origin on the plane, then a multiplication
with the KF will produce cancellation of some cross
terms and others will only be attenuated21.

When the KF design is not dependent from the
signal, disturbance and distortions are produced
over some signal terms on the time-frequency
plane. To avoid this, some authors propose the use
of optimal kernel functions, also known as signal
dependent kernels, because both their form and
volume are adapted to the form and volume of
the signal terms over the bidimensional domain that
the AF generates22.

KERNEL FUNCTION APPLICATION ON HRECG

If we consider that a TFR may be obtained using an
inverse bidimensional Fourier transform (2DFT) from
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Figure 1. VLP taken from different patients. (a), (b) and (c)
registered 5 days after infarct event, (d) and (g) taken 2
weeks after infarct event, (h), (k) and (l) taken 2 months
after infarct event, (e), (f), (i) and (j) taken 6 months after
infarct event. (from Garnder P. et al. Electrophysiologic and
anatomic basis for fractionated electrocardiograms re-
corded from healed myocardial infarcts. Circulation.
1985;72:596-611. Figure taken with permission of Kluwer
Academic Publisher. Ref: Gomes, Signal Averaged Elec-
trocardiography, pp.19, figure 6, 1993).
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Figure 2. (a) HRECG taken from a clinically diagnosed pa-
tient without risk of arrhythmia, and low pass filtered at 25
Hz cut frequency, (b) VLP similar to that shown in figure 1(A)
(out of scale), (c) HRECG signal product of sum from (a)
and (b), (d) VLP similar to that shown in figure 1 (L)(out of
scale), (e) HRECG signal product of sum from (a) and (d).
All VLP have an amplitude below 25uV, HRECG have an
amplitude between 1.5 and 2 mV.
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the product of the AF with the KF from the analyzed
signal: RTF =  (AF)(KF), then it is possible to state
that the most adequate KF will be the one adapt-
ing to the VLP signal terms over the time-frequency
plane.

In order to detect VLP, we will use optimal Gaus-
sian Kernel types (ORGK)23. In Figures 2(a) and 2(d),
is shown the same HRECG signal, taken from a pa-
tient whom has been clinically diagnosed not to
have risk of arrhythmia. This signal was low pass fil-
tered at 25Hz with the objective of adding VLP shown
in Figure 2(b) and 2(e), respectively. The results of
summation for each case are illustrated in Figures
2(c) and 2(f).

The VLP ORGK is extracted and shown in Figure
2(b), consequently an inverse 2DFT is calculated,

from the product of ORGK with the AF taken from
the HRECG signal shown in Figure 2(c), the TFR is
generated from Figure 4(c). The ORGK, the AF and
the product of both time-frequency planes are
shown in Figures 3(c, d, and e), respectively.

We can appreciate the localization of VLP in a
time-frequency plane as illustrated in Figure 4(c),
when the AF is multiplied by the ORGK, obtained
from the same VLP added to the HRECG signal (see
Figure 3). When the ORGK is obtained from the VLP
shown in Figure 5(b), the temporal localization in a
time-frequency plane shown in Figure 2(f), 5(a) ó
4(e), is not as effective as expected. Again, this re-
sult is because the ORGK obtained from the VLP
shown in Figure 3(b), permit to pass less HRECG sig-
nal terms than the ORGK gotten from the VLP that
were added to the HRECG (see Figure 5(b)).
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(b)

(c) (d) (e)

Time

Figure 3. (c) Ambiguity Function (AF) gotten from (a) HRECG
added to (b) VLP, which is the same than figure 2(c). (d) op-
timal radialy Gaussian Kernel (ORGK) for VLP shown in (b) (out
of scale), and (e) result of the product from (c) and (d).
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Figure 4. (b) same HRECG as shown in figure 3(a). (a) VLP
added to (b) are shown out of scale for its temporal identi-
fication over the time-frequency plane (c) by means of its
bidimensional Fourier transform (2DFT) from (b). (d) and (e)
are the same as (a) and (b), they are shown with the object
of temporal identification of VLP (d) over the time-frequen-
cy plane (f).
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Figure 5. (c) ambiguity function (AF) from HRECG signal
plus VLP (a) (same as shown in figure 2e), (d) optimal ra-
dialy Gaussian Kernel (ORGK) for VLP shown in (b) (out of
scale), (e) represents the product of (c) and (d).
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Figure 6. (b) same HRECG signal as that in figure 5(a). Sum
of VLP (a) and HRECG (b) are again shown to visualize tem-
poral identification of VLP over the time-frequency plane in
(c) by means of the calculus of bidimensional inverse Fourier
transforming (2DFT) on (b). (d) and (e) are the same as (a)
and (b) and are also shown with the objective of temporal
visualization of VLP (d) on a time-frequency plane (f).
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ORGK and its product with the AF, for each case,
are shown in Figure 3 and 5 respectively.

Now, if VLP of Figure 2(e) are added to the HRECG
signal of Figure 2(d), the HRECG signal of Figure 2(f)
is achieved. As can be seen, just like in the previ-
ous case, VLP can not be seen with the naked eye
in the HRECG signal. Once again, if the AF of the
HRECG is multiplied by the ORGK of the VLP (see
Figure 5), and the inverse 2DFT is obtained, it yields
the time-frequency representation of Figure 6(c).
The time-frequency representation of Figure 6(f) is
obtained using the previous procedure, but with the
use of ORGK from Figure 3(d) obtained by VLP from
Figure 3(b). As can be seen, VLP detection is sub-
stantially increased using ORGK as in Figure 3(d),
due to the filtering of excessive signal components
because of the ORGK adaptation to the VLP signal
representation over its AF.

RESULTS

A database of 132 HREGC signals was analyzed,
and organized in the following categories:

VT Group (myocardium infarct with ventricular
tachycardia risk). Built from 59 HRECG signals tak-
en from post-infarcted patients. These patients
were treated at the veterans Affairs Medical Cen-
ter in Oklahoma City, where an electrophysiologi-
cal study was done after having survived a myo-
cardium infarct.

LAR Group (No infarct to the myocardium, under
risk of ventricular tachycardia). Built from 73 HRECG
signals of patients to whom no signal of previous
myocardium infarct could be diagnosed. The elec-
trophysiological study was also made by the Veter-
ans Medical Center in Oklahoma City.

High resolution (16 bits), bipolar, orthogonal high
resolution registers where gathered from the X, Y
and Z leads.

Table I. Predictive values achieved through the classic
time domain method (QRSd = QRS duration), and with
the optimal radialy Gaussian kernel method (ORGK-VLP).

Method LAR Group VT Group  Total
(n = 73) (n = 59) (n = 132)
PF NV NF PV DET

ORGK-VLP 9 64 7 52 116
QRSd 11 62 10 49 111

PF = false positives, NV = true negatives, NF = false negati-
ves, DET = correctly detected cases.

Leads where gathered using the SAECG PREDIC-
TOR system of Corazonix Corp. A sampling frequen-
cy of 2 KHz was used. By averaging the signal, a
noise level lower than 0.4 µV RMS was achieved for
both groups. The noise measurement was made
with the magnitude vector over the ST segment in
a high pass band with cut frequency of 40 Hz.

Table 1 shows false positive cases (FP), the true
negative cases (TN), false negative cases (FN), true
positive cases (TP), and the total of correctly diag-
nosed patients (DET). These diagnostics represent
both those produced by the classical time domain
method as well as in the use of ORGK in detection
of VLP, when the 132 HRECG signal database was
analyzed (i.e., LAR and VT Group). One can observe
in Table 1 how the ORGK technique generates only
9 FP and 7 FN, while the time domain technique
produces 11 FP and 10 FN. Consequently, the ORGK
technique diagnoses correctly more patients (i.e.,
116) compared to the classic time domain meth-
od (i.e., 111).

DISCUSSION

An optimal Gaussian type kernel (ORGK) was used
for detection of ventricular late activity or ventricu-
lar late potentials (VLP). This kernel automatically
adapts to the VLP signal terms generated by the
ambiguity function (AF), which is obtained by the
inverse bidimensional Fourier transform (2DFT). Once
the ORGK is determined, it is multiplied by the AF
obtained from the high-resolution electrocardio-
graphic signal (HRECG), and the time-frequency
representation is obtained by means of an inverse
2DFT. In the analysis of 132 HRECG signals, 12 ORGK
where tested obtained from 12 VLP. The ORGK with
best results shown, was the one obtained from the
signal illustrated in Figure 3(b), which is similar to
the one in Figure 1(A).

The predictive values obtained with this analysis
were superior to those given by the classic time-
domain analysis; regardless, to establish an abnor-
mality criterion with the proposed techniques, there
remains a need to develop an automated quanti-
fication method of ventricular abnormality, while the
results shown in this paper are evaluated over a vi-
sual type analysis.

CONCLUSIONS

With the results achieved from analysis of the data-
base, it has been shown that with the application
of these techniques in the analysis of HRECG, it ’s
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possible to detect late ventricular activity in post-
infarcted patients.

There is a need to test a great number of cases
with a new database in order to compare results
from analysis and have more judgment elements
regarding the benefits of the method proposed.
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