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ABSTRACT 
Epilepsy is the most common neurological pathology. Despite treatments available to patients, only 58% to 73% 
will be free of seizures. This uncertainty in treatment outcomes can lead to other psychiatric affectations in ca-
ses where treatment success may be in doubt. Seizure prediction models (SPMs) emerged as a measure to help 
determine when patients may be susceptible to an imminent crisis. These models are based on the continuous 
monitoring of patient’s EEG signals and subsequent continuous analysis to identify features that differentiate ictal 
from interictal states. This is an ongoing field of research whose aim is to establish a robust set of features to feed 
the SPM and obtain a high degree of certainty regarding when the next seizure will occur. In this work we propose 
the analysis of phase differences of EEG as a method to extract features capable of discriminating ictal and preictal 
states in patients; specifically, the numeric distance between Q1 and Q3 of the distribution of phase differences. We 
compared this values to other phase synchronization methods and tested our hypothesis getting a p < 0.0009 with 
our proposed method.
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INTRODUCTION
Epilepsy is the most common neurological disorder, 

affecting around 30 million people worldwide [1]. At a 
neurological level, epilepsy manifests itself as electri-
cal discharges in neuron populations, that can pro-
duce muscular contractions and loss of consciousness 
[2] [3] [4] [5] [6]. These disorders affect the daily life of 
patients and impedes them from performing certain 
tasks at work, driving, and swimming when unsuper-
vised; hence, the interest in researching new ways to 
diagnose and treat epilepsy.

Current treatments for epilepsy involve drugs that can 
reduce the incidence and/or intensity of seizures up to a 
70% of patients. For the remaining 30%, who have 
drug-resistant epilepsy, other treatments are being 
tested. Of these, brain surgery has been the most suc-
cessful [4]. Brain surgery, however, is not a viable treat-
ment in all cases, and even when performed, only 58% 
to 73% of patients will be free of impairing seizures [7] [8]. 

Despite the ratio of success of surgical procedures 
and drug treatments, patients who suffer impairing 
epileptic seizures are also prone to suffering other psy-
chiatric affections, such as anxiety and depression [7] 

[8], both caused by the uncertainty as to when the next 
seizure will occur. The unpredictable nature of epi-
lepsy and the lack of understanding of how epilepto-
genic conditions emerge in the brain, have led to the 
development of several techniques for estimating the 
beginning or onset of an epileptic seizure [8]. The aim is 
to understand the conditions that lead to seizures and 
use this information in seizure prediction models in 
order to prevent the onset of epileptic crises in patients.

Most seizure prediction models (SPMs) are based on 
the analyses of recorded electroencephalographic sig-
nals (EEG), a common diagnostic procedure. SPMs 
derived from analyses of EEG signals are constrained 
to physiological and mathematical assumptions [9]: the 
former holds that changes in brain activity and its 

associated electrical signals appear before seizures 
and can be acquired by EEG, while the mathematical 
assumption refers to a commonly implicit, but not well 
understood, statistical relationship between past and 
future observations of the EEG signals. These two 
assumptions lead to consider that is possible to predict 
seizures based on EEG recordings [9]. 

In general, SPMs based on EEG signal processing, 
consist of three stages [10, 11]: preprocessing the EEG 
signals, extracting features from them, and classifying 
of brain electrical activity. One current challenge in 
this approach is to successfully o discriminate the dif-
ferent epileptic seizure stages such as interictal, preic-
tal, ictal and post-ictal stages [9] [10] [11] [12] [13] [14].

Depending on the method used in feature extraction, 
SPMs can be classified as: time-frequency methods, 
nonlinear measures, or statistical parameters of the 
signals [8] [10] [14]. Most of the time-frequency methods 
-e.g. as spectral power and connectivity- only function 
under certain limitations related to a limited temporal 
resolution. Additionally they assume linear interac-
tions of the signals and disregard non-stationary prop-
erties [15]. Nonlinear methods are preferred since it is 
assumed that they preserve the nonlinear nature of 
EEG signals [10] which is closer to their real behavior [16]. 

Phase synchronization analysis of EEG signals is now 
a promising approach for understanding brain dynam-
ics because it has shown that some changes occur in 
the synchronization and connectivity of brain net-
works during seizures [17]. The premise is that different 
areas of the brain may come to be connected between 
each other during an epileptic seizure [6]; that is. two 
distinct brain regions with oscillatory electrical activ-
ity will show phase synchronization though they are 
not anatomically adjacent. This phenomenon is known 
as functional connectivity. It has been widely reported 
that functional connectivity can be affected by brain 
pathologies, such as epilepsy [21]. 
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In the past decade, synchronization indexes have 
been used in epilepsy analyses during preictal/ictal 
stages, Haitao et al. for example, showed that synchro-
nization between distant areas of the brain increases 
in epileptic patients [18]. While Alaei et al. [19] proposed 
the mean phase coherence index as a feature to deter-
mine the preictal stage in patients, and Detti et al. [12] 
proposed an SPM whose features, obtained from syn-
chronization measurements in ictal and preictal 
stages, was able to predict the onset of seizures with 
high accuracy. These features were obtained by ana-
lyzing phase synchronization between each pair of 
EEG channels and selecting the most appropriate pair 
by inspection. 

In this work, we propose the instantaneous phase 
difference index (PDI) as an alternative approach for 
analyzing EEG signals to discriminate the preictal/post 
ictal and ictal stages. To this end we compared the 
performance of our index against Phase Locking Value 
(PLV), Phase Lag Index (PLI) and Phase Linearity 
Measurements (PLM) in two EEG databases and applied 
a Kruskal-Wallis test based on characteristics of their 
phase differences or synchronization value distribu-
tions in each epileptic stage.

MATERIALS AND METHODS

Databases
In this work we analyzed two databases. The first 

consists of EEG recordings and the second of intracra-
nial EEG recordings (iEEG).

Database 1
These EEG signals were obtained from Zenodo “A 

dataset of neonatal EEG recordings with seizure anno-
tations” [20]. This dataset contains 79 recordings of 
neonates acquired by a clinical team due to suspicions 
of seizure activity. The EEG recordings have an aver-
age recording time of 74 min, and were recorded with 
a NicOne EEG amplifier using a sample frequency of 

256Hz, with 19 electrodes positioned according to the 
10-20 International System with referential montage. 
Two additional channels were included in the record-
ing, which contain ECG and respiratory signals from 
the patients. Three experts (identified as A, B and C) 
were asked to individually annotate seizures with a 
clear onset of abnormal electrical activity. Seizures 
were defined by a duration of over 10 seconds 

Of the 79 initial recordings of patients in database 1, 
29 were chosen for further analysis because they 
showed lateralized epileptic seizure annotations. 
However, based on the criterion that at least two of the 
experts had to agree on the starting times, only 20 
seizure events were chosen.

A window containing 15 seconds before and 15 sec-
onds after the starting time of the seizure was cropped 
from the original recording and preprocessed for fur-
ther analysis.

Database 2
Database 2 consists of iEEG signals, obtained from 

the “American Epilepsy Society Seizure Prediction 
Challenge”. It contains a variable number of interictal/
ictal test samples of one second iEEG recordings for 
each subject. For our work only the first 20 interictal 
samples and the first 20 ictal samples per subject were 
chosen for further analysis. The number of channels 
also varied from subject-to-subject, but all channels 
available from each subject were used in the subse-
quent analysis.

Methods
Phase synchrony metrics has been proposed as a way 

to estimate the degrees of functional connectivity [2]. 
Most of the approaches proposed to analyze connec-
tivity are based on the frequency domain and operate 
under certain assumptions such as: stationary signals 
and limited temporal resolution. These techniques 
also assume linear behavior and interactions between 
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signals [15]. But these considerations are not always 
consistent with the real behavior and properties of 
EEG signals. 

We consider EEG to be the result of nonlinear dynamic 
processes in the brain, and seizure events as a non-sta-
tionary process [16] that may be evidenced by changes 
in phase synchrony indexes before and after the onset.

Phase Locking Value (PLV)
In literature, several phase-based indexes have been 

proposed, one of which is the Phase Locking Value (PLV), 
proposed in [15]. PLV was the first synchronization index 
approach to determine the synchronization between 
two signals in terms of their phase, φ1 and φ2 as: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
1
𝑁𝑁 '𝑒𝑒!"∆!$

%

&.

 

 

𝑃𝑃𝑃𝑃𝑃𝑃 = *+𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠0∆(23* 
 
 

𝑃𝑃𝑃𝑃𝑃𝑃 =
∫ 6∫ 𝑒𝑒!)∆!(+)-𝑒𝑒.!/01+2

3 𝑑𝑑𝑑𝑑6
/
𝑑𝑑𝑑𝑑4

.4

∫ 6∫ 𝑒𝑒!)∆!(+)-𝑒𝑒.!/01+2
3 𝑑𝑑𝑑𝑑6

/
𝑑𝑑𝑑𝑑5

.5

 

 
 

𝑃𝑃(𝛿𝛿&) < 𝑃𝑃(𝑥𝑥&) 
 
 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝜑𝜑& − 𝜑𝜑/

𝑘𝑘  

 

𝑥𝑥6(𝑘𝑘) = 𝑠𝑠6(𝑘𝑘) + 𝑗𝑗�̂�𝑠6(𝑘𝑘)   
 

 

𝜑𝜑6(𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑠𝑠
�̂�𝑠6(𝑘𝑘)
𝑠𝑠6(𝑘𝑘) 

 

(1)

where ∆φ is the phase difference between two signals 
whose synchronization is being estimated.

In this sense, PLV has a range of 0-1, where 0 corre-
sponds to no synchrony and 1 represents total syn-
chrony between signals. Lachaux et al. introduced the 
N term in order to test the synchrony of both signals 
against N trials, expecting a reduction of spontaneous 
synchronization.

Phase Lag Index (PLI)
Another approach to determining the synchrony 

between two signals is the Phase Lag Index, (PLI), pro-
posed in [22]. In this case, synchrony is analyzed in 
terms of phase difference, ∆φ, as

where sign [] is the sign function and ⟨⬚⟩ is the mean 
operator. PLI returns an index of synchronization in a 
range of 0-1. A PLI index equal to 1, means that the 

phase difference between two signals modulus � is 
equal to zero, i. e. both signals contain information 
from the same brain source, and this value does not 
represent true synchronization.

Phase Linearity Measurement (PLM)
A third method is Phase Linearity Measurement 

(PLM), proposed by Baselice et al. [23]. PLM analyzes 
phase differences as a function of time in narrow fre-
quency bands, from –B to B, that can be determined as 
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This approach introduces a first order model phase 
differences that is dependent on the instantaneous 
frequency of the signal, instead of a constant one, as in 
the PLV and PLM indexes.

Phase Difference Index (PDI)
From Equations (1), (2), and (3) we can observe that 

the PLV, PLI and PLM indexes are surjective functions 
over the ∆φ set. However, the use of surjective func-
tions does not preserve the full relationships between 
the elements of the set applied to, resulting in infor-
mation loss. 

Phase difference ∆φ is a discrete variable, with values 
in a range of � to -�, whereas the PLV, PLI and PLM 
functions all have a range of 0-1. This limited range 
also results in information loss that can be demon-
strated by calculating the probability of any outcome 
δ1 for the ∆φ and the probability of the outcome x1 for 
any variable X in a range from 0-1; thus P(δ1)<P(x1). 
Through Shannon’s entropy definition [24], we can 
show that:
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so variable ∆φ has greater entropy than X.
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This difference in entropy from ∆φ to X led us to con-
sider that this reduced range of the codomain of the 
PLV, PLI and PLM functions might be hiding part of the 
chaotic behavior of the EEG recordings. Hence, to 
avoid surjective functions we propose the Phase 
Difference Index (PDI), as an adequate means of ana-
lyzing the phase synchronization of EEG signals:
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where φ1 and φ2 are two phase vectors of k length.

The use of phase differences to analyze EEG scalp 
signals could lead to the detection of spurious phe-
nomena caused mainly by volume conduction [22] [23]. In 
order to test whether this phenomenon affects the 
ability of phase differences to discriminate preictal/
ictal signals, we calculated the phase differences: PLV, 
PLI and PLM indexes for database 2, which consists of 
intracranial EEG recordings (iEEG), where volume 
conduction effects are not present. 

Figure 1 depicts a block diagram of proposed algo-
rithms, where we can see the different stages in the 
processing of EEG signals.

Database pre-processing
In both databases a band-pass filter was applied with 

a bandwidth of 4Hz-6Hz (i. e. theta range). Specifically, 
we applied a zero phase FIR filter of 20th order, due 
zero padding and floating-point values of the FIR filter 
which results in non-zero DC gain. In this way, the DC 
component in the filtered signals was removed. 
Additionally, since the EEG signals in database 2 had a 
sampling frequency of 500Hz to 5000Hz, all record-
ings were downsampled to 500Hz.

Instantaneous phase calculation
As our aim was to obtain phase values from each 

sample of the signal, we considered each recording as 
an array of N signals obtained from electrodes placed 
on the brain according to the 10-20 International 
System. 

In order to retrieve the instantaneous phase for each 
EEG signals (s(k)n for n = 1,2…N), we constructed an 
analytic signal as

FIGURE 1. Data processing scheme.
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where n (k) is the Hilbert Transform of sn (k). From the 
Eq. (6) we can retrieve the phase value φ(k) for each 
EEG sequence as
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For each phase vector φn(k) obtained from the EEG 
signal, we can compute the degree of phase synchroni-
zation between these EEG signals. PLV, PLI, PLM and 
PDI were calculated using a window of half-second or 
128 samples, sliding one sample at a time. The size of 
the window was selected as a trade-off between the 
capacity to observe brain network reorganization on 
the sub-second time scale, as reported in [25] and to 
detect synchronization on the second-scale, as 
described in [15] [16] [17] [18] [19] [20] [21] [22]. 
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Synchronization and phase 
difference matrices

For database 1, the synchronization values for PLV, 
PLI, PLM and PDI were obtained from s(k)n for k = 0 and 
stored in a 19×19 matrix. Each cell corresponds to a pos-
sible combination of the n available channels. Since 
Eqs. (1), (2) and (3) do not preserve the sign of the phase 
difference, therefore PLV, PLI and PLM are commuta-
tive between a pair of signals. As a result, the synchro-
nization matrix will be symmetrical, with the main 
diagonal representing the synchronization of a given 
signal with itself. The diagonal of the PDI matrix will 
have a value of zero since it corresponds to the differ-
ence between signals from the same source. The same 
procedure was applied to the next sample of each 
sequence s(k)n for k = 1 and the resulting new 19x19 
matrix was stacked behind the previous one until the 
sliding window reached the last sample s(k)n for k = 
7554. This resulted in a 3D matrix with 19x19x7554 ele-
ments for each synchronization index PLV, PLI, PLM 
and PDI for each seizure event selected from database 1. 

The matrices obtained can be used to show how syn-
chronization or phase differences change over time 
when sliced them along the k dimension, see Figure 2. 

FIGURE 2. Synchronization/phase difference matrix structure. The red slice can be extracted to visualize 
changes in synchronization/phase differences over time.
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The column index from which the slice is extracted 
defines the reference signal to determine the temporal 
evolution of the synchronization or phase difference, 
respectively.

Since each matrix contains information pre- and 
post- seizure onset, the onset information will be in 
the center, along the k length, as Figure 2 shows. We 
can split each matrix in two along the k length to sep-
arate the information from preictal to ictal stages (see 
Figure 3).

For the database 2 recordings, the data processed by 
means of PLV, PLI, PLM and PDI were stored in matri-
ces with the same structure as before. The only differ-
ence was in their dimensions, since each of the sub-
jects’ recordings had distinct number of available 
channels.

Distributions of synchrony/phase 
difference values

Each matrix has dimension N×N×k, to analyze how 
the synchrony indexes and phase difference change as 
a function of time during the different epilepsy stages, 
we took a N×N matrix along the k dimension and gen-
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erated a vector of length N with the average synchrony 
or phase difference values of each channel. The first 
element of the vector corresponds to the average value 
of the channel 1 in the first N×N matrix. We then pro-
ceeded to the following N×N matrices until reaching 
the last one. At the end we obtained k number of vec-
tors of N length. Finally, we plotted the histogram of 
values of all the resulting vectors and then repeated 
the process with all the matrices.

Given that the ictal matrices were separated from the 
preictal/interictal ones, we displayed the histograms 
from between the ictal and preictal events. For both 
database 1 and database 2 recordings. We compared 
the ictal histograms to the corresponding interictal 
histograms.

Finally, we averaged the histograms per subject and 
analyzed how the distribution varied from the ictal 
stages to the interictal/preictal stages. We observed 
that the histograms corresponding to the interictal/
preictal stages tended to have greater dispersion than 
the ictal ones, these changes in dispersion led us to 
choose the numeric distance between the first, Q1 and 
the third quartiles, Q3, as a discriminator for the ictal 
and interictal/preictal stages of an epileptic event. A 
Kruskal-Wallis test was performed to probe our 
hypothesis. 

RESULTS AND DISCUSSION
Figures 4 and 5 show box plots of the mean phase 

differences and mean values of the PLV, PLI and PLM 
histograms for the ictal and preictal/interictal states, 
retrieved from an EEG recordings in databases 1 and 2. 
We observed that changes in the distribution of the 
mean values of the histograms between the ictal and 
interictal stages of the seizure were more evident 
when the recordings were analyzed by PDI, whereas 
the distribution of the mean values of the histograms 
for PLV, PLI and PLM indexes showed only small 
changes between seizure stages. 

FIGURE 3. Grayscale map of slices along the Cz channel
of the PDI, PLV, PLI and PLM matrices. A darker shade 

indicates a lower synchronization level. The line indicates 
the onset of the seizure.
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FIGURE 4. Grayscale map of slices along the Cz channel of the PDI, PLV, PLI and PLM matrices.
A darker shade indicates a lower synchronization level. The line indicates the onset of the seizure.
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FIGURE 5. Distributions of the mean PDI, PLV, PLI and PLM values for a crisis selected from database 2. The left column 
shows the distributions at the same scale; the right column shows the zoomed-in distributions of PLI, PLV and PLM.
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TABLE 1. Kruskal-Wallis test results for
each index of the database 1 EEG recordings Tabla 1 

 
Index p-value 
PLV 0.2235 
PLI 0.3169 
PLM 0.6263 
PDI 0.0008 

 
Tabla 2 

 
Index p-value 
PLV 0.0615 
PLI 0.4132 
PLM 0.0086 
PDI 0.0013 

 
Tabla 3 

 
Index Q1 preictal Q2 preictal Q3 preictal Q1 ictal Q2 ictal Q3 ictal 

PLV 0.091618 0.11099 0.12004 0.083648 0.098677 0.11634 

PLI 0.08535 0.10345 0.12568 0.080434 0.094336 0.10965 

PLM 0.061742 0.077533 0.10111 0.068173 0.083978 0.11099 

PDI 0.40871 0.74746 0.94231 0.26251 0.36316 0.52263 

 
Tabla 4 

 
Index Q1 preictal Q2 preictal Q3 preictal Q1 ictal Q2 ictal Q3 ictal 

PLV 0.2369 0.31682 0.37125 0.15321 0.28253 0.37855 

PLI 0.58824 0.66667 0.70588 0.58824 0.64706 0.70588 

PLM 0.32242 0.38348 0.45536 0.2595 0.35476 0.4189 

PDI 2.3803 2.8566 3.2211 2.0286 2.5791 3.0129 

 
 
 

TABLE 2. Kruskal-Wallis test results for
each index of the database 2 EEG recordings 

Tabla 1 
 

Index p-value 
PLV 0.2235 
PLI 0.3169 
PLM 0.6263 
PDI 0.0008 

 
Tabla 2 

 
Index p-value 
PLV 0.0615 
PLI 0.4132 
PLM 0.0086 
PDI 0.0013 

 
Tabla 3 

 
Index Q1 preictal Q2 preictal Q3 preictal Q1 ictal Q2 ictal Q3 ictal 

PLV 0.091618 0.11099 0.12004 0.083648 0.098677 0.11634 

PLI 0.08535 0.10345 0.12568 0.080434 0.094336 0.10965 

PLM 0.061742 0.077533 0.10111 0.068173 0.083978 0.11099 

PDI 0.40871 0.74746 0.94231 0.26251 0.36316 0.52263 

 
Tabla 4 

 
Index Q1 preictal Q2 preictal Q3 preictal Q1 ictal Q2 ictal Q3 ictal 

PLV 0.2369 0.31682 0.37125 0.15321 0.28253 0.37855 

PLI 0.58824 0.66667 0.70588 0.58824 0.64706 0.70588 

PLM 0.32242 0.38348 0.45536 0.2595 0.35476 0.4189 

PDI 2.3803 2.8566 3.2211 2.0286 2.5791 3.0129 

 
 
 

Tables 1 and 2 summarize the results of the Kruskal-
Wallis test applied to the indexes computed from the 
recordings in databases 1 and 2, respectively. In both 
cases, the PDI performed better than PLV, PLI and PLM 

indexes under our testing conditions. Tables 3 and 4 
summarize the Q1, Q2 and Q3 values of the distribu-
tions of the mean histograms for the PLV, PLI, PLM and 
PDI indexes for the ictal and preictal stages.

TABLE 3. Q1, Q2 and Q3 values for the mean histograms of the for PLV, PLI, PLM and PDI values computed for Database 1.

Tabla 1 
 

Index p-value 
PLV 0.2235 
PLI 0.3169 
PLM 0.6263 
PDI 0.0008 

 
Tabla 2 

 
Index p-value 
PLV 0.0615 
PLI 0.4132 
PLM 0.0086 
PDI 0.0013 

 
Tabla 3 

 
Index Q1 preictal Q2 preictal Q3 preictal Q1 ictal Q2 ictal Q3 ictal 

PLV 0.091618 0.11099 0.12004 0.083648 0.098677 0.11634 

PLI 0.08535 0.10345 0.12568 0.080434 0.094336 0.10965 

PLM 0.061742 0.077533 0.10111 0.068173 0.083978 0.11099 

PDI 0.40871 0.74746 0.94231 0.26251 0.36316 0.52263 

 
Tabla 4 

 
Index Q1 preictal Q2 preictal Q3 preictal Q1 ictal Q2 ictal Q3 ictal 

PLV 0.2369 0.31682 0.37125 0.15321 0.28253 0.37855 

PLI 0.58824 0.66667 0.70588 0.58824 0.64706 0.70588 

PLM 0.32242 0.38348 0.45536 0.2595 0.35476 0.4189 

PDI 2.3803 2.8566 3.2211 2.0286 2.5791 3.0129 

 
 
 

TABLE 4. Q1, Q2 and Q3 values for the mean histograms of the for PLV, PLI, PLM and PDI values computed for Database 2. 

Tabla 1 
 

Index p-value 
PLV 0.2235 
PLI 0.3169 
PLM 0.6263 
PDI 0.0008 

 
Tabla 2 

 
Index p-value 
PLV 0.0615 
PLI 0.4132 
PLM 0.0086 
PDI 0.0013 

 
Tabla 3 

 
Index Q1 preictal Q2 preictal Q3 preictal Q1 ictal Q2 ictal Q3 ictal 

PLV 0.091618 0.11099 0.12004 0.083648 0.098677 0.11634 

PLI 0.08535 0.10345 0.12568 0.080434 0.094336 0.10965 

PLM 0.061742 0.077533 0.10111 0.068173 0.083978 0.11099 

PDI 0.40871 0.74746 0.94231 0.26251 0.36316 0.52263 

 
Tabla 4 

 
Index Q1 preictal Q2 preictal Q3 preictal Q1 ictal Q2 ictal Q3 ictal 

PLV 0.2369 0.31682 0.37125 0.15321 0.28253 0.37855 

PLI 0.58824 0.66667 0.70588 0.58824 0.64706 0.70588 

PLM 0.32242 0.38348 0.45536 0.2595 0.35476 0.4189 

PDI 2.3803 2.8566 3.2211 2.0286 2.5791 3.0129 

 
 
 

A similar performance was observed for the record-
ings from database 2. As the PLI and PLM indexes were 
developed to reduce spurious synchronization values 
caused by volume conduction, but PLV and PDI are 
susceptible to this, database 2 provided a scenario 
with no advantage to any index. In this case it was 
evident that under no volume conduction effects, PDI 
also performed better than the other three indexes, 
suggesting that PDI preserves information that is use-
ful for discriminating the stages of epileptic seizures. 
This results are consistent with the results reported 

previously in [26] where the authors found no signifi-
cant changes in the PLI mean value between the preic-
tal and ictal stages.

Overall, our proposed index, PDI, showed a better 
performance in feature extraction based on the distri-
bution analysis of phase synchronization values than 
other indexes developed previously. Implementing 
our proposed index in the processing stages of SPMs 
offers a feature that was not previously revealed by 
existing phase synchronization indexes.
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CONCLUSIONS
We found that changes in synchrony occur during the 

onset of a seizure and could be detected by phase anal-
ysis of EEG signals. The changes in the distribution of 
synchronization values before and after onset identi-
fied with the proposed PDI index suggest non-station-
ary behavior of EEG signals as reported in [16].

The phase difference index (PDI) can be used as a fea-
ture to discriminate ictal and preictal/interictal stages 
with good accuracy. It offers the advantage of using a 
simple algorithm that results in less intensive computa-
tional tasks and has potential applications in the devel-
opment of SPMs which can operate in almost real time, 
and be implemented in portable devices. Further devel-
opment of feature extraction using PDI can be extended 
using of broadband phase estimation methods.

The main limitations of the PDI approach is the need 
for a narrow frequency band in order to obtain inter-
pretable results, this means that a priori knowledge of 
the spectral distribution of energy of the seizure 
events is required. We recognize that this approach 
neglects interactions that may occur between differ-

ent frequency bands. Although approaches to calculat-
ing broadband synchronization between signals have 
been developed [26] [27], they still have the limitation of 
being surjective functions that, as the presented work 
shows, can obfuscate information contained in the 
EEG recording.
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